30 resultados para Intelligent control systems
em Universidad Politécnica de Madrid
Resumo:
The main objective of ventilation systems in case of fire is the reduction of the possible consequences by achieving the best possible conditions for the evacuation of the users and the intervention of the emergency services. In the last years, the required quick response of the ventilation system, from normal to emergency mode, has been improved by the use of automatic and semi-automatic control systems, what reduces the response times through the support to the operators decision taking, and the use of pre-defined strategies. A further step consists on the use of closedloop algorithms, which takes into account not only the initial conditions but their development (air velocity, traffic situation, etc), optimizing the quality of the smoke control process
Resumo:
This article presents a cooperative manoeuvre among three dual mode cars – vehicles equipped with sensors and actuators, and that can be driven either manually or autonomously. One vehicle is driven autonomously and the other two are driven manually. The main objective is to test two decision algorithms for priority conflict resolution at intersections so that a vehicle autonomously driven can take their own decision about crossing an intersection mingling with manually driven cars without the need for infrastructure modifications. To do this, the system needs the position, speeds, and turning intentions of the rest of the cars involved in the manoeuvre. This information is acquired via communications, but other methods are also viable, such as artificial vision. The idea of the experiments was to adjust the speed of the manually driven vehicles to force a situation where all three vehicles arrive at an intersection at the same time.
Resumo:
Evaluation of three solar and daylighting control systems based on Calumen II, Ecotect and Radiance simulation programs to obtain an energy efficient and healthy interior in the experimental building prototype SDE10
Resumo:
The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT) and Cyber-Physical Systems (CPS) are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN) are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container), and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries.
Resumo:
This paper describes a novel deployment of an intelligent user-centered HVAC (Heating, Ventilating and Air Conditioner) control system. The main objective of this system is to optimize user comfort and to reduce energy consumption in office buildings. Existing commercial HVAC control systems work in a fixed and predetermined way. The novelty of the proposed system is that it adapts dynamically to the user and to the building environment. For this purpose the system architecture has been designed under the paradigm of Ambient Intelligence. A prototype of the system proposed has been tested in a real-world environment.
Resumo:
In this paper, two techniques to control UAVs (Unmanned Aerial Vehicles), based on visual information are presented. The first one is based on the detection and tracking of planar structures from an on-board camera, while the second one is based on the detection and 3D reconstruction of the position of the UAV based on an external camera system. Both strategies are tested with a VTOL (Vertical take-off and landing) UAV, and results show good behavior of the visual systems (precision in the estimation and frame rate) when estimating the helicopter¿s position and using the extracted information to control the UAV.
Resumo:
It is known that the techniques under the topic of Soft Computing have a strong capability of learning and cognition, as well as a good tolerance to uncertainty and imprecision. Due to these properties they can be applied successfully to Intelligent Vehicle Systems; ITS is a broad range of technologies and techniques that hold answers to many transportation problems. The unmannedcontrol of the steering wheel of a vehicle is one of the most important challenges facing researchers in this area. This paper presents a method to adjust automatically a fuzzy controller to manage the steering wheel of a mass-produced vehicle; to reach it, information about the car state while a human driver is handling the car is taken and used to adjust, via iterative geneticalgorithms an appropriated fuzzy controller. To evaluate the obtained controllers, it will be considered the performance obtained in the track following task, as well as the smoothness of the driving carried out.
Resumo:
Rapid prototyping environments can speed up the research of visual control algorithms. We have designed and implemented a software framework for fast prototyping of visual control algorithms for Micro Aerial Vehicles (MAV). We have applied a combination of a proxy-based network communication architecture and a custom Application Programming Interface. This allows multiple experimental configurations, like drone swarms or distributed processing of a drone’s video stream. Currently, the framework supports a low-cost MAV: the Parrot AR.Drone. Real tests have been performed on this platform and the results show comparatively low figures of the extra communication delay introduced by the framework, while adding new functionalities and flexibility to the selected drone. This implementation is open-source and can be downloaded from www.vision4uav.com/?q=VC4MAV-FW
Resumo:
The aim of this work was twofold: on the one hand, to describe a comparative study of two intelligent control techniques-fuzzy and intelligent proportional-integral (PI) control, and on the other, to try to provide an answer to an as yet unsolved topic in the automotive sector-stop-and-go control in urban environments at very low speeds. Commercial vehicles exhibit nonlinear behavior and therefore constitute an excellent platform on which to check the controllers. This paper describes the design, tuning, and evaluation of the controllers performing actions on the longitudinal control of a car-the throttle and brake pedals-to accomplish stop-and-go manoeuvres. They are tested in two steps. First, a simulation model is used to design and tune the controllers, and second, these controllers are implemented in the commercial vehicle-which has automatic driving capabilities-to check their behavior. A stop-and-go manoeuvre is implemented with the two control techniques using two cooperating vehicles.
Resumo:
Hoy en día, el desarrollo tecnológico en el campo de los sistemas inteligentes de transporte (ITS por sus siglas en inglés) ha permitido dotar a los vehículos con diversos sistemas de ayuda a la conducción (ADAS, del inglés advanced driver assistance system), mejorando la experiencia y seguridad de los pasajeros, en especial del conductor. La mayor parte de estos sistemas están pensados para advertir al conductor sobre ciertas situaciones de riesgo, como la salida involuntaria del carril o la proximidad de obstáculos en el camino. No obstante, también podemos encontrar sistemas que van un paso más allá y son capaces de cooperar con el conductor en el control del vehículo o incluso relegarlos de algunas tareas tediosas. Es en este último grupo donde se encuentran los sistemas de control electrónico de estabilidad (ESP - Electronic Stability Program), el antibloqueo de frenos (ABS - Anti-lock Braking System), el control de crucero (CC - Cruise Control) y los más recientes sistemas de aparcamiento asistido. Continuando con esta línea de desarrollo, el paso siguiente consiste en la supresión del conductor humano, desarrollando sistemas que sean capaces de conducir un vehículo de forma autónoma y con un rendimiento superior al del conductor. En este trabajo se presenta, en primer lugar, una arquitectura de control para la automatización de vehículos. Esta se compone de distintos componentes de hardware y software, agrupados de acuerdo a su función principal. El diseño de la arquitectura parte del trabajo previo desarrollado por el Programa AUTOPIA, aunque introduce notables aportaciones en cuanto a la eficiencia, robustez y escalabilidad del sistema. Ahondando un poco más en detalle, debemos resaltar el desarrollo de un algoritmo de localización basado en enjambres de partículas. Este está planteado como un método de filtrado y fusión de la información obtenida a partir de los distintos sensores embarcados en el vehículo, entre los que encontramos un receptor GPS (Global Positioning System), unidades de medición inercial (IMU – Inertial Measurement Unit) e información tomada directamente de los sensores embarcados por el fabricante, como la velocidad de las ruedas y posición del volante. Gracias a este método se ha conseguido resolver el problema de la localización, indispensable para el desarrollo de sistemas de conducción autónoma. Continuando con el trabajo de investigación, se ha estudiado la viabilidad de la aplicación de técnicas de aprendizaje y adaptación al diseño de controladores para el vehículo. Como punto de partida se emplea el método de Q-learning para la generación de un controlador borroso lateral sin ningún tipo de conocimiento previo. Posteriormente se presenta un método de ajuste on-line para la adaptación del control longitudinal ante perturbaciones impredecibles del entorno, como lo son los cambios en la inclinación del camino, fricción de las ruedas o peso de los ocupantes. Para finalizar, se presentan los resultados obtenidos durante un experimento de conducción autónoma en carreteras reales, el cual se llevó a cabo en el mes de Junio de 2012 desde la población de San Lorenzo de El Escorial hasta las instalaciones del Centro de Automática y Robótica (CAR) en Arganda del Rey. El principal objetivo tras esta demostración fue validar el funcionamiento, robustez y capacidad de la arquitectura propuesta para afrontar el problema de la conducción autónoma, bajo condiciones mucho más reales a las que se pueden alcanzar en las instalaciones de prueba. ABSTRACT Nowadays, the technological advances in the Intelligent Transportation Systems (ITS) field have led the development of several driving assistance systems (ADAS). These solutions are designed to improve the experience and security of all the passengers, especially the driver. For most of these systems, the main goal is to warn drivers about unexpected circumstances leading to risk situations such as involuntary lane departure or proximity to other vehicles. However, other ADAS go a step further, being able to cooperate with the driver in the control of the vehicle, or even overriding it on some tasks. Examples of this kind of systems are the anti-lock braking system (ABS), cruise control (CC) and the recently commercialised assisted parking systems. Within this research line, the next step is the development of systems able to replace the human drivers, improving the control and therefore, the safety and reliability of the vehicles. First of all, this dissertation presents a control architecture design for autonomous driving. It is made up of several hardware and software components, grouped according to their main function. The design of this architecture is based on the previous works carried out by the AUTOPIA Program, although notable improvements have been made regarding the efficiency, robustness and scalability of the system. It is also remarkable the work made on the development of a location algorithm for vehicles. The proposal is based on the emulation of the behaviour of biological swarms and its performance is similar to the well-known particle filters. The developed method combines information obtained from different sensors, including GPS, inertial measurement unit (IMU), and data from the original vehicle’s sensors on-board. Through this filtering algorithm the localization problem is properly managed, which is critical for the development of autonomous driving systems. The work deals also with the fuzzy control tuning system, a very time consuming task when done manually. An analysis of learning and adaptation techniques for the development of different controllers has been made. First, the Q-learning –a reinforcement learning method– has been applied to the generation of a lateral fuzzy controller from scratch. Subsequently, the development of an adaptation method for longitudinal control is presented. With this proposal, a final cruise control controller is able to deal with unpredictable environment disturbances, such as road slope, wheel’s friction or even occupants’ weight. As a testbed for the system, an autonomous driving experiment on real roads is presented. This experiment was carried out on June 2012, driving from San Lorenzo de El Escorial up to the Center for Automation and Robotics (CAR) facilities in Arganda del Rey. The main goal of the demonstration was validating the performance, robustness and viability of the proposed architecture to deal with the problem of autonomous driving under more demanding conditions than those achieved on closed test tracks.
Resumo:
In this paper, an intelligent control approach based on neuro-fuzzy systems performance is presented, with the objective of counteracting the vibrations that affect the low-cost vision platform onboard an unmanned aerial system of rotating nature. A scaled dynamical model of a helicopter is used to simulate vibrations on its fuselage. The impact of these vibrations on the low-cost vision system will be assessed and an intelligent control approach will be derived in order to reduce its detrimental influence. Different trials that consider a neuro-fuzzy approach as a fundamental part of an intelligent semi-active control strategy have been carried out. Satisfactory results have been achieved compared to those obtained by means of vibration reduction passive techniques.
Resumo:
This paper describes a general approach for real time traffic management support using knowledge based models. Recognizing that human intervention is usually required to apply the current automatic traffic control systems, it is argued that there is a need for an additional intelligent layer to help operators to understand traffic problems and to make the best choice of strategic control actions that modify the assumption framework of the existing systems.
Resumo:
Communications Based Train Control Systems require high quality radio data communications for train signaling and control. Actually most of these systems use 2.4GHz band with proprietary radio transceivers and leaky feeder as distribution system. All them demand a high QoS radio network to improve the efficiency of railway networks. We present narrow band, broad band and data correlated measurements taken in Madrid underground with a transmission system at 2.4 GHz in a test network of 2 km length in subway tunnels. The architecture proposed has a strong overlap in between cells to improve reliability and QoS. The radio planning of the network is carefully described and modeled with narrow band and broadband measurements and statistics. The result is a network with 99.7% of packets transmitted correctly and average propagation delay of 20ms. These results fulfill the specifications QoS of CBTC systems.
Resumo:
This paper shows the actual state of a compilation work on Thermal Control Design Data being done at Madrid (Lamf-ETSIA) under several ESTEC contracts, introducing a Handbook already issued, its additions and updatings.
Resumo:
An important goal in the field of intelligent transportation systems (ITS) is to provide driving aids aimed at preventing accidents and reducing the number of traffic victims. The commonest traffic accidents in urban areas are due to sudden braking that demands a very fast response on the part of drivers. Attempts to solve this problem have motivated many ITS advances including the detection of the intention of surrounding cars using lasers, radars or cameras. However, this might not be enough to increase safety when there is a danger of collision. Vehicle to vehicle communications are needed to ensure that the other intentions of cars are also available. The article describes the development of a controller to perform an emergency stop via an electro-hydraulic braking system employed on dry asphalt. An original V2V communication scheme based on WiFi cards has been used for broadcasting positioning information to other vehicles. The reliability of the scheme has been theoretically analyzed to estimate its performance when the number of vehicles involved is much higher. This controller has been incorporated into the AUTOPIA program control for automatic cars. The system has been implemented in Citroën C3 Pluriel, and various tests were performed to evaluate its operation.