8 resultados para Integrity dimension

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unattended Wireless Sensor Networks (UWSNs) operate in autonomous or disconnected mode: sensed data is collected periodically by an itinerant sink. Between successive sink visits, sensor-collected data is subject to some unique vulnerabilities. In particular, while the network is unattended, a mobile adversary (capable of subverting up to a fraction of sensors at a time) can migrate between compromised sets of sensors and inject fraudulent data. In this paper, we provide two collaborative authentication techniques that allow an UWSN to maintain integrity and authenticity of sensor data-in the presence of a mobile adversary-until the next sink visit. Proposed schemes use simple, standard, and inexpensive symmetric cryptographic primitives, coupled with key evolution and few message exchanges. We study their security and effectiveness, both analytically and via simulations. We also assess their robustness and show how to achieve the desired trade-off between performance and security.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present contribution discusses the development of a PSE-3D instability analysis algorithm, in which a matrix forming and storing approach is followed. Alternatively to the typically used in stability calculations spectral methods, new stable high-order finitedifference-based numerical schemes for spatial discretization 1 are employed. Attention is paid to the issue of efficiency, which is critical for the success of the overall algorithm. To this end, use is made of a parallelizable sparse matrix linear algebra package which takes advantage of the sparsity offered by the finite-difference scheme and, as expected, is shown to perform substantially more efficiently than when spectral collocation methods are used. The building blocks of the algorithm have been implemented and extensively validated, focusing on classic PSE analysis of instability on the flow-plate boundary layer, temporal and spatial BiGlobal EVP solutions (the latter necessary for the initialization of the PSE-3D), as well as standard PSE in a cylindrical coordinates using the nonparallel Batchelor vortex basic flow model, such that comparisons between PSE and PSE-3D be possible; excellent agreement is shown in all aforementioned comparisons. Finally, the linear PSE-3D instability analysis is applied to a fully three-dimensional flow composed of a counter-rotating pair of nonparallel Batchelor vortices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turbulent mixing is a very important issue in the study of geophysical phenomena because most fluxes arising in geophysics fluids are turbulent. We study turbulent mixing due to convection using a laboratory experimental model with two miscible fluids of different density with an initial top heavy density distribution. The fluids that form the initial unstable stratification are miscible and the turbulence will produce molecular mixing. The denser fluid comes into the lighter fluid layer and it generates several forced plumes which are gravitationally unstable. As the turbulent plumes develop, the denser fluid comes into contact with the lighter fluid layer and the mixing process grows. Their development is caused by the lateral interaction between these plumes at the complex fractal surface between the dense and light fluids

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many studies have assessed the characterization of anatomical or functional connectivity in mild cognitive impairment (MCI), however it is still unknown how they are related in the course of the pathology. Here we integrate the analysis of magnetoencephalographic (MEG) data with white matter (WM) integrity quantification from diffusion weighted imaging (DWI), to asses whether the damage in the WM tracts disrupt the organization of the functional networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new measure to characterize the dimension of complex networks based on the ergodic theory of dynamical systems. This measure is derived from the correlation sum of a trajectory generated by a random walker navigating the network, and extends the classical Grassberger-Procaccia algorithm to the context of complex networks. The method is validated with reliable results for both synthetic networks and real-world networks such as the world air-transportation network or urban networks, and provides a computationally fast way for estimating the dimensionality of networks which only relies on the local information provided by the walkers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente Trabajo fin Fin de Máster, versa sobre una caracterización preliminar del comportamiento de un robot de tipo industrial, configurado por 4 eslabones y 4 grados de libertad, y sometido a fuerzas de mecanizado en su extremo. El entorno de trabajo planteado es el de plantas de fabricación de piezas de aleaciones de aluminio para automoción. Este tipo de componentes parte de un primer proceso de fundición que saca la pieza en bruto. Para series medias y altas, en función de las propiedades mecánicas y plásticas requeridas y los costes de producción, la inyección a alta presión (HPDC) y la fundición a baja presión (LPC) son las dos tecnologías más usadas en esta primera fase. Para inyección a alta presión, las aleaciones de aluminio más empleadas son, en designación simbólica según norma EN 1706 (entre paréntesis su designación numérica); EN AC AlSi9Cu3(Fe) (EN AC 46000) , EN AC AlSi9Cu3(Fe)(Zn) (EN AC 46500), y EN AC AlSi12Cu1(Fe) (EN AC 47100). Para baja presión, EN AC AlSi7Mg0,3 (EN AC 42100). En los 3 primeros casos, los límites de Silicio permitidos pueden superan el 10%. En el cuarto caso, es inferior al 10% por lo que, a los efectos de ser sometidas a mecanizados, las piezas fabricadas en aleaciones con Si superior al 10%, se puede considerar que son equivalentes, diferenciándolas de la cuarta. Las tolerancias geométricas y dimensionales conseguibles directamente de fundición, recogidas en normas como ISO 8062 o DIN 1688-1, establecen límites para este proceso. Fuera de esos límites, las garantías en conseguir producciones con los objetivos de ppms aceptados en la actualidad por el mercado, obligan a ir a fases posteriores de mecanizado. Aquellas geometrías que, funcionalmente, necesitan disponer de unas tolerancias geométricas y/o dimensionales definidas acorde a ISO 1101, y no capaces por este proceso inicial de moldeado a presión, deben ser procesadas en una fase posterior en células de mecanizado. En este caso, las tolerancias alcanzables para procesos de arranque de viruta se recogen en normas como ISO 2768. Las células de mecanizado se componen, por lo general, de varios centros de control numérico interrelacionados y comunicados entre sí por robots que manipulan las piezas en proceso de uno a otro. Dichos robots, disponen en su extremo de una pinza utillada para poder coger y soltar las piezas en los útiles de mecanizado, las mesas de intercambio para cambiar la pieza de posición o en utillajes de equipos de medición y prueba, o en cintas de entrada o salida. La repetibilidad es alta, de centésimas incluso, definida según norma ISO 9283. El problema es que, estos rangos de repetibilidad sólo se garantizan si no se hacen esfuerzos o éstos son despreciables (caso de mover piezas). Aunque las inercias de mover piezas a altas velocidades hacen que la trayectoria intermedia tenga poca precisión, al inicio y al final (al coger y dejar pieza, p.e.) se hacen a velocidades relativamente bajas que hacen que el efecto de las fuerzas de inercia sean menores y que permiten garantizar la repetibilidad anteriormente indicada. No ocurre así si se quitara la garra y se intercambia con un cabezal motorizado con una herramienta como broca, mandrino, plato de cuchillas, fresas frontales o tangenciales… Las fuerzas ejercidas de mecanizado generarían unos pares en las uniones tan grandes y tan variables que el control del robot no sería capaz de responder (o no está preparado, en un principio) y generaría una desviación en la trayectoria, realizada a baja velocidad, que desencadenaría en un error de posición (ver norma ISO 5458) no asumible para la funcionalidad deseada. Se podría llegar al caso de que la tolerancia alcanzada por un pretendido proceso más exacto diera una dimensión peor que la que daría el proceso de fundición, en principio con mayor variabilidad dimensional en proceso (y por ende con mayor intervalo de tolerancia garantizable). De hecho, en los CNCs, la precisión es muy elevada, (pudiéndose despreciar en la mayoría de los casos) y no es la responsable de, por ejemplo la tolerancia de posición al taladrar un agujero. Factores como, temperatura de la sala y de la pieza, calidad constructiva de los utillajes y rigidez en el amarre, error en el giro de mesas y de colocación de pieza, si lleva agujeros previos o no, si la herramienta está bien equilibrada y el cono es el adecuado para el tipo de mecanizado… influyen más. Es interesante que, un elemento no específico tan común en una planta industrial, en el entorno anteriormente descrito, como es un robot, el cual no sería necesario añadir por disponer de él ya (y por lo tanto la inversión sería muy pequeña), puede mejorar la cadena de valor disminuyendo el costo de fabricación. Y si se pudiera conjugar que ese robot destinado a tareas de manipulación, en los muchos tiempos de espera que va a disfrutar mientras el CNC arranca viruta, pudiese coger un cabezal y apoyar ese mecanizado; sería doblemente interesante. Por lo tanto, se antoja sugestivo poder conocer su comportamiento e intentar explicar qué sería necesario para llevar esto a cabo, motivo de este trabajo. La arquitectura de robot seleccionada es de tipo SCARA. La búsqueda de un robot cómodo de modelar y de analizar cinemática y dinámicamente, sin limitaciones relevantes en la multifuncionalidad de trabajos solicitados, ha llevado a esta elección, frente a otras arquitecturas como por ejemplo los robots antropomórficos de 6 grados de libertad, muy populares a nivel industrial. Este robot dispone de 3 uniones, de las cuales 2 son de tipo par de revolución (1 grado de libertad cada una) y la tercera es de tipo corredera o par cilíndrico (2 grados de libertad). La primera unión, de tipo par de revolución, sirve para unir el suelo (considerado como eslabón número 1) con el eslabón número 2. La segunda unión, también de ese tipo, une el eslabón número 2 con el eslabón número 3. Estos 2 brazos, pueden describir un movimiento horizontal, en el plano X-Y. El tercer eslabón, está unido al eslabón número 4 por la unión de tipo corredera. El movimiento que puede describir es paralelo al eje Z. El robot es de 4 grados de libertad (4 motores). En relación a los posibles trabajos que puede realizar este tipo de robot, su versatilidad abarca tanto operaciones típicas de manipulación como operaciones de arranque de viruta. Uno de los mecanizados más usuales es el taladrado, por lo cual se elige éste para su modelización y análisis. Dentro del taladrado se elegirá para acotar las fuerzas, taladrado en macizo con broca de diámetro 9 mm. El robot se ha considerado por el momento que tenga comportamiento de sólido rígido, por ser el mayor efecto esperado el de los pares en las uniones. Para modelar el robot se utiliza el método de los sistemas multicuerpos. Dentro de este método existen diversos tipos de formulaciones (p.e. Denavit-Hartenberg). D-H genera una cantidad muy grande de ecuaciones e incógnitas. Esas incógnitas son de difícil comprensión y, para cada posición, hay que detenerse a pensar qué significado tienen. Se ha optado por la formulación de coordenadas naturales. Este sistema utiliza puntos y vectores unitarios para definir la posición de los distintos cuerpos, y permite compartir, cuando es posible y se quiere, para definir los pares cinemáticos y reducir al mismo tiempo el número de variables. Las incógnitas son intuitivas, las ecuaciones de restricción muy sencillas y se reduce considerablemente el número de ecuaciones e incógnitas. Sin embargo, las coordenadas naturales “puras” tienen 2 problemas. El primero, que 2 elementos con un ángulo de 0 o 180 grados, dan lugar a puntos singulares que pueden crear problemas en las ecuaciones de restricción y por lo tanto han de evitarse. El segundo, que tampoco inciden directamente sobre la definición o el origen de los movimientos. Por lo tanto, es muy conveniente complementar esta formulación con ángulos y distancias (coordenadas relativas). Esto da lugar a las coordenadas naturales mixtas, que es la formulación final elegida para este TFM. Las coordenadas naturales mixtas no tienen el problema de los puntos singulares. Y la ventaja más importante reside en su utilidad a la hora de aplicar fuerzas motrices, momentos o evaluar errores. Al incidir sobre la incógnita origen (ángulos o distancias) controla los motores de manera directa. El algoritmo, la simulación y la obtención de resultados se ha programado mediante Matlab. Para realizar el modelo en coordenadas naturales mixtas, es preciso modelar en 2 pasos el robot a estudio. El primer modelo se basa en coordenadas naturales. Para su validación, se plantea una trayectoria definida y se analiza cinemáticamente si el robot satisface el movimiento solicitado, manteniendo su integridad como sistema multicuerpo. Se cuantifican los puntos (en este caso inicial y final) que configuran el robot. Al tratarse de sólidos rígidos, cada eslabón queda definido por sus respectivos puntos inicial y final (que son los más interesantes para la cinemática y la dinámica) y por un vector unitario no colineal a esos 2 puntos. Los vectores unitarios se colocan en los lugares en los que se tenga un eje de rotación o cuando se desee obtener información de un ángulo. No son necesarios vectores unitarios para medir distancias. Tampoco tienen por qué coincidir los grados de libertad con el número de vectores unitarios. Las longitudes de cada eslabón quedan definidas como constantes geométricas. Se establecen las restricciones que definen la naturaleza del robot y las relaciones entre los diferentes elementos y su entorno. La trayectoria se genera por una nube de puntos continua, definidos en coordenadas independientes. Cada conjunto de coordenadas independientes define, en un instante concreto, una posición y postura de robot determinada. Para conocerla, es necesario saber qué coordenadas dependientes hay en ese instante, y se obtienen resolviendo por el método de Newton-Rhapson las ecuaciones de restricción en función de las coordenadas independientes. El motivo de hacerlo así es porque las coordenadas dependientes deben satisfacer las restricciones, cosa que no ocurre con las coordenadas independientes. Cuando la validez del modelo se ha probado (primera validación), se pasa al modelo 2. El modelo número 2, incorpora a las coordenadas naturales del modelo número 1, las coordenadas relativas en forma de ángulos en los pares de revolución (3 ángulos; ϕ1, ϕ 2 y ϕ3) y distancias en los pares prismáticos (1 distancia; s). Estas coordenadas relativas pasan a ser las nuevas coordenadas independientes (sustituyendo a las coordenadas independientes cartesianas del modelo primero, que eran coordenadas naturales). Es necesario revisar si el sistema de vectores unitarios del modelo 1 es suficiente o no. Para este caso concreto, se han necesitado añadir 1 vector unitario adicional con objeto de que los ángulos queden perfectamente determinados con las correspondientes ecuaciones de producto escalar y/o vectorial. Las restricciones habrán de ser incrementadas en, al menos, 4 ecuaciones; una por cada nueva incógnita. La validación del modelo número 2, tiene 2 fases. La primera, al igual que se hizo en el modelo número 1, a través del análisis cinemático del comportamiento con una trayectoria definida. Podrían obtenerse del modelo 2 en este análisis, velocidades y aceleraciones, pero no son necesarios. Tan sólo interesan los movimientos o desplazamientos finitos. Comprobada la coherencia de movimientos (segunda validación), se pasa a analizar cinemáticamente el comportamiento con trayectorias interpoladas. El análisis cinemático con trayectorias interpoladas, trabaja con un número mínimo de 3 puntos máster. En este caso se han elegido 3; punto inicial, punto intermedio y punto final. El número de interpolaciones con el que se actúa es de 50 interpolaciones en cada tramo (cada 2 puntos máster hay un tramo), resultando un total de 100 interpolaciones. El método de interpolación utilizado es el de splines cúbicas con condición de aceleración inicial y final constantes, que genera las coordenadas independientes de los puntos interpolados de cada tramo. Las coordenadas dependientes se obtienen resolviendo las ecuaciones de restricción no lineales con el método de Newton-Rhapson. El método de las splines cúbicas es muy continuo, por lo que si se desea modelar una trayectoria en el que haya al menos 2 movimientos claramente diferenciados, es preciso hacerlo en 2 tramos y unirlos posteriormente. Sería el caso en el que alguno de los motores se desee expresamente que esté parado durante el primer movimiento y otro distinto lo esté durante el segundo movimiento (y así sucesivamente). Obtenido el movimiento, se calculan, también mediante fórmulas de diferenciación numérica, las velocidades y aceleraciones independientes. El proceso es análogo al anteriormente explicado, recordando la condición impuesta de que la aceleración en el instante t= 0 y en instante t= final, se ha tomado como 0. Las velocidades y aceleraciones dependientes se calculan resolviendo las correspondientes derivadas de las ecuaciones de restricción. Se comprueba, de nuevo, en una tercera validación del modelo, la coherencia del movimiento interpolado. La dinámica inversa calcula, para un movimiento definido -conocidas la posición, velocidad y la aceleración en cada instante de tiempo-, y conocidas las fuerzas externas que actúan (por ejemplo el peso); qué fuerzas hay que aplicar en los motores (donde hay control) para que se obtenga el citado movimiento. En la dinámica inversa, cada instante del tiempo es independiente de los demás y tiene una posición, una velocidad y una aceleración y unas fuerzas conocidas. En este caso concreto, se desean aplicar, de momento, sólo las fuerzas debidas al peso, aunque se podrían haber incorporado fuerzas de otra naturaleza si se hubiese deseado. Las posiciones, velocidades y aceleraciones, proceden del cálculo cinemático. El efecto inercial de las fuerzas tenidas en cuenta (el peso) es calculado. Como resultado final del análisis dinámico inverso, se obtienen los pares que han de ejercer los cuatro motores para replicar el movimiento prescrito con las fuerzas que estaban actuando. La cuarta validación del modelo consiste en confirmar que el movimiento obtenido por aplicar los pares obtenidos en la dinámica inversa, coinciden con el obtenido en el análisis cinemático (movimiento teórico). Para ello, es necesario acudir a la dinámica directa. La dinámica directa se encarga de calcular el movimiento del robot, resultante de aplicar unos pares en motores y unas fuerzas en el robot. Por lo tanto, el movimiento real resultante, al no haber cambiado ninguna condición de las obtenidas en la dinámica inversa (pares de motor y fuerzas inerciales debidas al peso de los eslabones) ha de ser el mismo al movimiento teórico. Siendo así, se considera que el robot está listo para trabajar. Si se introduce una fuerza exterior de mecanizado no contemplada en la dinámica inversa y se asigna en los motores los mismos pares resultantes de la resolución del problema dinámico inverso, el movimiento real obtenido no es igual al movimiento teórico. El control de lazo cerrado se basa en ir comparando el movimiento real con el deseado e introducir las correcciones necesarias para minimizar o anular las diferencias. Se aplican ganancias en forma de correcciones en posición y/o velocidad para eliminar esas diferencias. Se evalúa el error de posición como la diferencia, en cada punto, entre el movimiento teórico deseado en el análisis cinemático y el movimiento real obtenido para cada fuerza de mecanizado y una ganancia concreta. Finalmente, se mapea el error de posición obtenido para cada fuerza de mecanizado y las diferentes ganancias previstas, graficando la mejor precisión que puede dar el robot para cada operación que se le requiere, y en qué condiciones. -------------- This Master´s Thesis deals with a preliminary characterization of the behaviour for an industrial robot, configured with 4 elements and 4 degrees of freedoms, and subjected to machining forces at its end. Proposed working conditions are those typical from manufacturing plants with aluminium alloys for automotive industry. This type of components comes from a first casting process that produces rough parts. For medium and high volumes, high pressure die casting (HPDC) and low pressure die casting (LPC) are the most used technologies in this first phase. For high pressure die casting processes, most used aluminium alloys are, in simbolic designation according EN 1706 standard (between brackets, its numerical designation); EN AC AlSi9Cu3(Fe) (EN AC 46000) , EN AC AlSi9Cu3(Fe)(Zn) (EN AC 46500), y EN AC AlSi12Cu1(Fe) (EN AC 47100). For low pressure, EN AC AlSi7Mg0,3 (EN AC 42100). For the 3 first alloys, Si allowed limits can exceed 10% content. Fourth alloy has admisible limits under 10% Si. That means, from the point of view of machining, that components made of alloys with Si content above 10% can be considered as equivalent, and the fourth one must be studied separately. Geometrical and dimensional tolerances directly achievables from casting, gathered in standards such as ISO 8062 or DIN 1688-1, establish a limit for this process. Out from those limits, guarantees to achieve batches with objetive ppms currently accepted by market, force to go to subsequent machining process. Those geometries that functionally require a geometrical and/or dimensional tolerance defined according ISO 1101, not capable with initial moulding process, must be obtained afterwards in a machining phase with machining cells. In this case, tolerances achievables with cutting processes are gathered in standards such as ISO 2768. In general terms, machining cells contain several CNCs that they are interrelated and connected by robots that handle parts in process among them. Those robots have at their end a gripper in order to take/remove parts in machining fixtures, in interchange tables to modify position of part, in measurement and control tooling devices, or in entrance/exit conveyors. Repeatibility for robot is tight, even few hundredths of mm, defined according ISO 9283. Problem is like this; those repeatibilty ranks are only guaranteed when there are no stresses or they are not significant (f.e. due to only movement of parts). Although inertias due to moving parts at a high speed make that intermediate paths have little accuracy, at the beginning and at the end of trajectories (f.e, when picking part or leaving it) movement is made with very slow speeds that make lower the effect of inertias forces and allow to achieve repeatibility before mentioned. It does not happens the same if gripper is removed and it is exchanged by an spindle with a machining tool such as a drilling tool, a pcd boring tool, a face or a tangential milling cutter… Forces due to machining would create such big and variable torques in joints that control from the robot would not be able to react (or it is not prepared in principle) and would produce a deviation in working trajectory, made at a low speed, that would trigger a position error (see ISO 5458 standard) not assumable for requested function. Then it could be possible that tolerance achieved by a more exact expected process would turn out into a worst dimension than the one that could be achieved with casting process, in principle with a larger dimensional variability in process (and hence with a larger tolerance range reachable). As a matter of fact, accuracy is very tight in CNC, (its influence can be ignored in most cases) and it is not the responsible of, for example position tolerance when drilling a hole. Factors as, room and part temperature, manufacturing quality of machining fixtures, stiffness at clamping system, rotating error in 4th axis and part positioning error, if there are previous holes, if machining tool is properly balanced, if shank is suitable for that machining type… have more influence. It is interesting to know that, a non specific element as common, at a manufacturing plant in the enviroment above described, as a robot (not needed to be added, therefore with an additional minimum investment), can improve value chain decreasing manufacturing costs. And when it would be possible to combine that the robot dedicated to handling works could support CNCs´ works in its many waiting time while CNCs cut, and could take an spindle and help to cut; it would be double interesting. So according to all this, it would be interesting to be able to know its behaviour and try to explain what would be necessary to make this possible, reason of this work. Selected robot architecture is SCARA type. The search for a robot easy to be modeled and kinematically and dinamically analyzed, without significant limits in the multifunctionality of requested operations, has lead to this choice. Due to that, other very popular architectures in the industry, f.e. 6 DOFs anthropomorphic robots, have been discarded. This robot has 3 joints, 2 of them are revolute joints (1 DOF each one) and the third one is a cylindrical joint (2 DOFs). The first joint, a revolute one, is used to join floor (body 1) with body 2. The second one, a revolute joint too, joins body 2 with body 3. These 2 bodies can move horizontally in X-Y plane. Body 3 is linked to body 4 with a cylindrical joint. Movement that can be made is paralell to Z axis. The robt has 4 degrees of freedom (4 motors). Regarding potential works that this type of robot can make, its versatility covers either typical handling operations or cutting operations. One of the most common machinings is to drill. That is the reason why it has been chosen for the model and analysis. Within drilling, in order to enclose spectrum force, a typical solid drilling with 9 mm diameter. The robot is considered, at the moment, to have a behaviour as rigid body, as biggest expected influence is the one due to torques at joints. In order to modelize robot, it is used multibodies system method. There are under this heading different sorts of formulations (f.e. Denavit-Hartenberg). D-H creates a great amount of equations and unknown quantities. Those unknown quatities are of a difficult understanding and, for each position, one must stop to think about which meaning they have. The choice made is therefore one of formulation in natural coordinates. This system uses points and unit vectors to define position of each different elements, and allow to share, when it is possible and wished, to define kinematic torques and reduce number of variables at the same time. Unknown quantities are intuitive, constrain equations are easy and number of equations and variables are strongly reduced. However, “pure” natural coordinates suffer 2 problems. The first one is that 2 elements with an angle of 0° or 180°, give rise to singular positions that can create problems in constrain equations and therefore they must be avoided. The second problem is that they do not work directly over the definition or the origin of movements. Given that, it is highly recommended to complement this formulation with angles and distances (relative coordinates). This leads to mixed natural coordinates, and they are the final formulation chosen for this MTh. Mixed natural coordinates have not the problem of singular positions. And the most important advantage lies in their usefulness when applying driving forces, torques or evaluating errors. As they influence directly over origin variable (angles or distances), they control motors directly. The algorithm, simulation and obtaining of results has been programmed with Matlab. To design the model in mixed natural coordinates, it is necessary to model the robot to be studied in 2 steps. The first model is based in natural coordinates. To validate it, it is raised a defined trajectory and it is kinematically analyzed if robot fulfils requested movement, keeping its integrity as multibody system. The points (in this case starting and ending points) that configure the robot are quantified. As the elements are considered as rigid bodies, each of them is defined by its respectively starting and ending point (those points are the most interesting ones from the point of view of kinematics and dynamics) and by a non-colinear unit vector to those points. Unit vectors are placed where there is a rotating axis or when it is needed information of an angle. Unit vectors are not needed to measure distances. Neither DOFs must coincide with the number of unit vectors. Lengths of each arm are defined as geometrical constants. The constrains that define the nature of the robot and relationships among different elements and its enviroment are set. Path is generated by a cloud of continuous points, defined in independent coordinates. Each group of independent coordinates define, in an specific instant, a defined position and posture for the robot. In order to know it, it is needed to know which dependent coordinates there are in that instant, and they are obtained solving the constraint equations with Newton-Rhapson method according to independent coordinates. The reason to make it like this is because dependent coordinates must meet constraints, and this is not the case with independent coordinates. When suitability of model is checked (first approval), it is given next step to model 2. Model 2 adds to natural coordinates from model 1, the relative coordinates in the shape of angles in revoluting torques (3 angles; ϕ1, ϕ 2 and ϕ3) and distances in prismatic torques (1 distance; s). These relative coordinates become the new independent coordinates (replacing to cartesian independent coordinates from model 1, that they were natural coordinates). It is needed to review if unit vector system from model 1 is enough or not . For this specific case, it was necessary to add 1 additional unit vector to define perfectly angles with their related equations of dot and/or cross product. Constrains must be increased in, at least, 4 equations; one per each new variable. The approval of model 2 has two phases. The first one, same as made with model 1, through kinematic analysis of behaviour with a defined path. During this analysis, it could be obtained from model 2, velocities and accelerations, but they are not needed. They are only interesting movements and finite displacements. Once that the consistence of movements has been checked (second approval), it comes when the behaviour with interpolated trajectories must be kinematically analyzed. Kinematic analysis with interpolated trajectories work with a minimum number of 3 master points. In this case, 3 points have been chosen; starting point, middle point and ending point. The number of interpolations has been of 50 ones in each strecht (each 2 master points there is an strecht), turning into a total of 100 interpolations. The interpolation method used is the cubic splines one with condition of constant acceleration both at the starting and at the ending point. This method creates the independent coordinates of interpolated points of each strecht. The dependent coordinates are achieved solving the non-linear constrain equations with Newton-Rhapson method. The method of cubic splines is very continuous, therefore when it is needed to design a trajectory in which there are at least 2 movements clearly differents, it is required to make it in 2 steps and join them later. That would be the case when any of the motors would keep stopped during the first movement, and another different motor would remain stopped during the second movement (and so on). Once that movement is obtained, they are calculated, also with numerical differenciation formulas, the independent velocities and accelerations. This process is analogous to the one before explained, reminding condition that acceleration when t=0 and t=end are 0. Dependent velocities and accelerations are calculated solving related derivatives of constrain equations. In a third approval of the model it is checked, again, consistence of interpolated movement. Inverse dynamics calculates, for a defined movement –knowing position, velocity and acceleration in each instant of time-, and knowing external forces that act (f.e. weights); which forces must be applied in motors (where there is control) in order to obtain requested movement. In inverse dynamics, each instant of time is independent of the others and it has a position, a velocity, an acceleration and known forces. In this specific case, it is intended to apply, at the moment, only forces due to the weight, though forces of another nature could have been added if it would have been preferred. The positions, velocities and accelerations, come from kinematic calculation. The inertial effect of forces taken into account (weight) is calculated. As final result of the inverse dynamic analysis, the are obtained torques that the 4 motors must apply to repeat requested movement with the forces that were acting. The fourth approval of the model consists on confirming that the achieved movement due to the use of the torques obtained in the inverse dynamics, are in accordance with movements from kinematic analysis (theoretical movement). For this, it is necessary to work with direct dynamics. Direct dynamic is in charge of calculating the movements of robot that results from applying torques at motors and forces at the robot. Therefore, the resultant real movement, as there was no change in any condition of the ones obtained at the inverse dynamics (motor torques and inertial forces due to weight of elements) must be the same than theoretical movement. When these results are achieved, it is considered that robot is ready to work. When a machining external force is introduced and it was not taken into account before during the inverse dynamics, and torques at motors considered are the ones of the inverse dynamics, the real movement obtained is not the same than the theoretical movement. Closed loop control is based on comparing real movement with expected movement and introducing required corrrections to minimize or cancel differences. They are applied gains in the way of corrections for position and/or tolerance to remove those differences. Position error is evaluated as the difference, in each point, between theoretical movemment (calculated in the kinematic analysis) and the real movement achieved for each machining force and for an specific gain. Finally, the position error obtained for each machining force and gains are mapped, giving a chart with the best accuracy that the robot can give for each operation that has been requested and which conditions must be provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Entendemos por inteligencia colectiva una forma de inteligencia que surge de la colaboración y la participación de varios individuos o, siendo más estrictos, varias entidades. En base a esta sencilla definición podemos observar que este concepto es campo de estudio de las más diversas disciplinas como pueden ser la sociología, las tecnologías de la información o la biología, atendiendo cada una de ellas a un tipo de entidades diferentes: seres humanos, elementos de computación o animales. Como elemento común podríamos indicar que la inteligencia colectiva ha tenido como objetivo el ser capaz de fomentar una inteligencia de grupo que supere a la inteligencia individual de las entidades que lo forman a través de mecanismos de coordinación, cooperación, competencia, integración, diferenciación, etc. Sin embargo, aunque históricamente la inteligencia colectiva se ha podido desarrollar de forma paralela e independiente en las distintas disciplinas que la tratan, en la actualidad, los avances en las tecnologías de la información han provocado que esto ya no sea suficiente. Hoy en día seres humanos y máquinas a través de todo tipo de redes de comunicación e interfaces, conviven en un entorno en el que la inteligencia colectiva ha cobrado una nueva dimensión: ya no sólo puede intentar obtener un comportamiento superior al de sus entidades constituyentes sino que ahora, además, estas inteligencias individuales son completamente diferentes unas de otras y aparece por lo tanto el doble reto de ser capaces de gestionar esta gran heterogeneidad y al mismo tiempo ser capaces de obtener comportamientos aún más inteligentes gracias a las sinergias que los distintos tipos de inteligencias pueden generar. Dentro de las áreas de trabajo de la inteligencia colectiva existen varios campos abiertos en los que siempre se intenta obtener unas prestaciones superiores a las de los individuos. Por ejemplo: consciencia colectiva, memoria colectiva o sabiduría colectiva. Entre todos estos campos nosotros nos centraremos en uno que tiene presencia en la práctica totalidad de posibles comportamientos inteligentes: la toma de decisiones. El campo de estudio de la toma de decisiones es realmente amplio y dentro del mismo la evolución ha sido completamente paralela a la que citábamos anteriormente en referencia a la inteligencia colectiva. En primer lugar se centró en el individuo como entidad decisoria para posteriormente desarrollarse desde un punto de vista social, institucional, etc. La primera fase dentro del estudio de la toma de decisiones se basó en la utilización de paradigmas muy sencillos: análisis de ventajas e inconvenientes, priorización basada en la maximización de algún parámetro del resultado, capacidad para satisfacer los requisitos de forma mínima por parte de las alternativas, consultas a expertos o entidades autorizadas o incluso el azar. Sin embargo, al igual que el paso del estudio del individuo al grupo supone una nueva dimensión dentro la inteligencia colectiva la toma de decisiones colectiva supone un nuevo reto en todas las disciplinas relacionadas. Además, dentro de la decisión colectiva aparecen dos nuevos frentes: los sistemas de decisión centralizados y descentralizados. En el presente proyecto de tesis nos centraremos en este segundo, que es el que supone una mayor atractivo tanto por las posibilidades de generar nuevo conocimiento y trabajar con problemas abiertos actualmente así como en lo que respecta a la aplicabilidad de los resultados que puedan obtenerse. Ya por último, dentro del campo de los sistemas de decisión descentralizados existen varios mecanismos fundamentales que dan lugar a distintas aproximaciones a la problemática propia de este campo. Por ejemplo el liderazgo, la imitación, la prescripción o el miedo. Nosotros nos centraremos en uno de los más multidisciplinares y con mayor capacidad de aplicación en todo tipo de disciplinas y que, históricamente, ha demostrado que puede dar lugar a prestaciones muy superiores a otros tipos de mecanismos de decisión descentralizados: la confianza y la reputación. Resumidamente podríamos indicar que confianza es la creencia por parte de una entidad que otra va a realizar una determinada actividad de una forma concreta. En principio es algo subjetivo, ya que la confianza de dos entidades diferentes sobre una tercera no tiene porqué ser la misma. Por otro lado, la reputación es la idea colectiva (o evaluación social) que distintas entidades de un sistema tiene sobre otra entidad del mismo en lo que respecta a un determinado criterio. Es por tanto una información de carácter colectivo pero única dentro de un sistema, no asociada a cada una de las entidades del sistema sino por igual a todas ellas. En estas dos sencillas definiciones se basan la inmensa mayoría de sistemas colectivos. De hecho muchas disertaciones indican que ningún tipo de organización podría ser viable de no ser por la existencia y la utilización de los conceptos de confianza y reputación. A partir de ahora, a todo sistema que utilice de una u otra forma estos conceptos lo denominaremos como sistema de confianza y reputación (o TRS, Trust and Reputation System). Sin embargo, aunque los TRS son uno de los aspectos de nuestras vidas más cotidianos y con un mayor campo de aplicación, el conocimiento que existe actualmente sobre ellos no podría ser más disperso. Existen un gran número de trabajos científicos en todo tipo de áreas de conocimiento: filosofía, psicología, sociología, economía, política, tecnologías de la información, etc. Pero el principal problema es que no existe una visión completa de la confianza y reputación en su sentido más amplio. Cada disciplina focaliza sus estudios en unos aspectos u otros dentro de los TRS, pero ninguna de ellas trata de explotar el conocimiento generado en el resto para mejorar sus prestaciones en su campo de aplicación concreto. Aspectos muy detallados en algunas áreas de conocimiento son completamente obviados por otras, o incluso aspectos tratados por distintas disciplinas, al ser estudiados desde distintos puntos de vista arrojan resultados complementarios que, sin embargo, no son aprovechados fuera de dichas áreas de conocimiento. Esto nos lleva a una dispersión de conocimiento muy elevada y a una falta de reutilización de metodologías, políticas de actuación y técnicas de una disciplina a otra. Debido su vital importancia, esta alta dispersión de conocimiento se trata de uno de los principales problemas que se pretenden resolver con el presente trabajo de tesis. Por otro lado, cuando se trabaja con TRS, todos los aspectos relacionados con la seguridad están muy presentes ya que muy este es un tema vital dentro del campo de la toma de decisiones. Además también es habitual que los TRS se utilicen para desempeñar responsabilidades que aportan algún tipo de funcionalidad relacionada con el mundo de la seguridad. Por último no podemos olvidar que el acto de confiar está indefectiblemente unido al de delegar una determinada responsabilidad, y que al tratar estos conceptos siempre aparece la idea de riesgo, riesgo de que las expectativas generadas por el acto de la delegación no se cumplan o se cumplan de forma diferente. Podemos ver por lo tanto que cualquier sistema que utiliza la confianza para mejorar o posibilitar su funcionamiento, por su propia naturaleza, es especialmente vulnerable si las premisas en las que se basa son atacadas. En este sentido podemos comprobar (tal y como analizaremos en más detalle a lo largo del presente documento) que las aproximaciones que realizan las distintas disciplinas que tratan la violación de los sistemas de confianza es de lo más variado. únicamente dentro del área de las tecnologías de la información se ha intentado utilizar alguno de los enfoques de otras disciplinas de cara a afrontar problemas relacionados con la seguridad de TRS. Sin embargo se trata de una aproximación incompleta y, normalmente, realizada para cumplir requisitos de aplicaciones concretas y no con la idea de afianzar una base de conocimiento más general y reutilizable en otros entornos. Con todo esto en cuenta, podemos resumir contribuciones del presente trabajo de tesis en las siguientes. • La realización de un completo análisis del estado del arte dentro del mundo de la confianza y la reputación que nos permite comparar las ventajas e inconvenientes de las diferentes aproximación que se realizan a estos conceptos en distintas áreas de conocimiento. • La definición de una arquitectura de referencia para TRS que contempla todas las entidades y procesos que intervienen en este tipo de sistemas. • La definición de un marco de referencia para analizar la seguridad de TRS. Esto implica tanto identificar los principales activos de un TRS en lo que respecta a la seguridad, así como el crear una tipología de posibles ataques y contramedidas en base a dichos activos. • La propuesta de una metodología para el análisis, el diseño, el aseguramiento y el despliegue de un TRS en entornos reales. Adicionalmente se exponen los principales tipos de aplicaciones que pueden obtenerse de los TRS y los medios para maximizar sus prestaciones en cada una de ellas. • La generación de un software que permite simular cualquier tipo de TRS en base a la arquitectura propuesta previamente. Esto permite evaluar las prestaciones de un TRS bajo una determinada configuración en un entorno controlado previamente a su despliegue en un entorno real. Igualmente es de gran utilidad para evaluar la resistencia a distintos tipos de ataques o mal-funcionamientos del sistema. Además de las contribuciones realizadas directamente en el campo de los TRS, hemos realizado aportaciones originales a distintas áreas de conocimiento gracias a la aplicación de las metodologías de análisis y diseño citadas con anterioridad. • Detección de anomalías térmicas en Data Centers. Hemos implementado con éxito un sistema de deteción de anomalías térmicas basado en un TRS. Comparamos la detección de prestaciones de algoritmos de tipo Self-Organized Maps (SOM) y Growing Neural Gas (GNG). Mostramos como SOM ofrece mejores resultados para anomalías en los sistemas de refrigeración de la sala mientras que GNG es una opción más adecuada debido a sus tasas de detección y aislamiento para casos de anomalías provocadas por una carga de trabajo excesiva. • Mejora de las prestaciones de recolección de un sistema basado en swarm computing y odometría social. Gracias a la implementación de un TRS conseguimos mejorar las capacidades de coordinación de una red de robots autónomos distribuidos. La principal contribución reside en el análisis y la validación de las mejoras increméntales que pueden conseguirse con la utilización apropiada de la información existente en el sistema y que puede ser relevante desde el punto de vista de un TRS, y con la implementación de algoritmos de cálculo de confianza basados en dicha información. • Mejora de la seguridad de Wireless Mesh Networks contra ataques contra la integridad, la confidencialidad o la disponibilidad de los datos y / o comunicaciones soportadas por dichas redes. • Mejora de la seguridad de Wireless Sensor Networks contra ataques avanzamos, como insider attacks, ataques desconocidos, etc. Gracias a las metodologías presentadas implementamos contramedidas contra este tipo de ataques en entornos complejos. En base a los experimentos realizados, hemos demostrado que nuestra aproximación es capaz de detectar y confinar varios tipos de ataques que afectan a los protocoles esenciales de la red. La propuesta ofrece unas velocidades de detección muy altas así como demuestra que la inclusión de estos mecanismos de actuación temprana incrementa significativamente el esfuerzo que un atacante tiene que introducir para comprometer la red. Finalmente podríamos concluir que el presente trabajo de tesis supone la generación de un conocimiento útil y aplicable a entornos reales, que nos permite la maximización de las prestaciones resultantes de la utilización de TRS en cualquier tipo de campo de aplicación. De esta forma cubrimos la principal carencia existente actualmente en este campo, que es la falta de una base de conocimiento común y agregada y la inexistencia de una metodología para el desarrollo de TRS que nos permita analizar, diseñar, asegurar y desplegar TRS de una forma sistemática y no artesanal y ad-hoc como se hace en la actualidad. ABSTRACT By collective intelligence we understand a form of intelligence that emerges from the collaboration and competition of many individuals, or strictly speaking, many entities. Based on this simple definition, we can see how this concept is the field of study of a wide range of disciplines, such as sociology, information science or biology, each of them focused in different kinds of entities: human beings, computational resources, or animals. As a common factor, we can point that collective intelligence has always had the goal of being able of promoting a group intelligence that overcomes the individual intelligence of the basic entities that constitute it. This can be accomplished through different mechanisms such as coordination, cooperation, competence, integration, differentiation, etc. Collective intelligence has historically been developed in a parallel and independent way among the different disciplines that deal with it. However, this is not enough anymore due to the advances in information technologies. Nowadays, human beings and machines coexist in environments where collective intelligence has taken a new dimension: we yet have to achieve a better collective behavior than the individual one, but now we also have to deal with completely different kinds of individual intelligences. Therefore, we have a double goal: being able to deal with this heterogeneity and being able to get even more intelligent behaviors thanks to the synergies that the different kinds of intelligence can generate. Within the areas of collective intelligence there are several open topics where they always try to get better performances from groups than from the individuals. For example: collective consciousness, collective memory, or collective wisdom. Among all these topics we will focus on collective decision making, that has influence in most of the collective intelligent behaviors. The field of study of decision making is really wide, and its evolution has been completely parallel to the aforementioned collective intelligence. Firstly, it was focused on the individual as the main decision-making entity, but later it became involved in studying social and institutional groups as basic decision-making entities. The first studies within the decision-making discipline were based on simple paradigms, such as pros and cons analysis, criteria prioritization, fulfillment, following orders, or even chance. However, in the same way that studying the community instead of the individual meant a paradigm shift within collective intelligence, collective decision-making means a new challenge for all the related disciplines. Besides, two new main topics come up when dealing with collective decision-making: centralized and decentralized decision-making systems. In this thesis project we focus in the second one, because it is the most interesting based on the opportunities to generate new knowledge and deal with open issues in this area, as well as these results can be put into practice in a wider set of real-life environments. Finally, within the decentralized collective decision-making systems discipline, there are several basic mechanisms that lead to different approaches to the specific problems of this field, for example: leadership, imitation, prescription, or fear. We will focus on trust and reputation. They are one of the most multidisciplinary concepts and with more potential for applying them in every kind of environments. Besides, they have historically shown that they can generate better performance than other decentralized decision-making mechanisms. Shortly, we say trust is the belief of one entity that the outcome of other entities’ actions is going to be in a specific way. It is a subjective concept because the trust of two different entities in another one does not have to be the same. Reputation is the collective idea (or social evaluation) that a group of entities within a system have about another entity based on a specific criterion. Thus, it is a collective concept in its origin. It is important to say that the behavior of most of the collective systems are based on these two simple definitions. In fact, a lot of articles and essays describe how any organization would not be viable if the ideas of trust and reputation did not exist. From now on, we call Trust an Reputation System (TRS) to any kind of system that uses these concepts. Even though TRSs are one of the most common everyday aspects in our lives, the existing knowledge about them could not be more dispersed. There are thousands of scientific works in every field of study related to trust and reputation: philosophy, psychology, sociology, economics, politics, information sciences, etc. But the main issue is that a comprehensive vision of trust and reputation for all these disciplines does not exist. Every discipline focuses its studies on a specific set of topics but none of them tries to take advantage of the knowledge generated in the other disciplines to improve its behavior or performance. Detailed topics in some fields are completely obviated in others, and even though the study of some topics within several disciplines produces complementary results, these results are not used outside the discipline where they were generated. This leads us to a very high knowledge dispersion and to a lack in the reuse of methodologies, policies and techniques among disciplines. Due to its great importance, this high dispersion of trust and reputation knowledge is one of the main problems this thesis contributes to solve. When we work with TRSs, all the aspects related to security are a constant since it is a vital aspect within the decision-making systems. Besides, TRS are often used to perform some responsibilities related to security. Finally, we cannot forget that the act of trusting is invariably attached to the act of delegating a specific responsibility and, when we deal with these concepts, the idea of risk is always present. This refers to the risk of generated expectations not being accomplished or being accomplished in a different way we anticipated. Thus, we can see that any system using trust to improve or enable its behavior, because of its own nature, is especially vulnerable if the premises it is based on are attacked. Related to this topic, we can see that the approaches of the different disciplines that study attacks of trust and reputation are very diverse. Some attempts of using approaches of other disciplines have been made within the information science area of knowledge, but these approaches are usually incomplete, not systematic and oriented to achieve specific requirements of specific applications. They never try to consolidate a common base of knowledge that could be reusable in other context. Based on all these ideas, this work makes the following direct contributions to the field of TRS: • The compilation of the most relevant existing knowledge related to trust and reputation management systems focusing on their advantages and disadvantages. • We define a generic architecture for TRS, identifying the main entities and processes involved. • We define a generic security framework for TRS. We identify the main security assets and propose a complete taxonomy of attacks for TRS. • We propose and validate a methodology to analyze, design, secure and deploy TRS in real-life environments. Additionally we identify the principal kind of applications we can implement with TRS and how TRS can provide a specific functionality. • We develop a software component to validate and optimize the behavior of a TRS in order to achieve a specific functionality or performance. In addition to the contributions made directly to the field of the TRS, we have made original contributions to different areas of knowledge thanks to the application of the analysis, design and security methodologies previously presented: • Detection of thermal anomalies in Data Centers. Thanks to the application of the TRS analysis and design methodologies, we successfully implemented a thermal anomaly detection system based on a TRS.We compare the detection performance of Self-Organized- Maps and Growing Neural Gas algorithms. We show how SOM provides better results for Computer Room Air Conditioning anomaly detection, yielding detection rates of 100%, in training data with malfunctioning sensors. We also show that GNG yields better detection and isolation rates for workload anomaly detection, reducing the false positive rate when compared to SOM. • Improving the performance of a harvesting system based on swarm computing and social odometry. Through the implementation of a TRS, we achieved to improve the ability of coordinating a distributed network of autonomous robots. The main contribution lies in the analysis and validation of the incremental improvements that can be achieved with proper use information that exist in the system and that are relevant for the TRS, and the implementation of the appropriated trust algorithms based on such information. • Improving Wireless Mesh Networks security against attacks against the integrity, confidentiality or availability of data and communications supported by these networks. Thanks to the implementation of a TRS we improved the detection time rate against these kind of attacks and we limited their potential impact over the system. • We improved the security of Wireless Sensor Networks against advanced attacks, such as insider attacks, unknown attacks, etc. Thanks to the TRS analysis and design methodologies previously described, we implemented countermeasures against such attacks in a complex environment. In our experiments we have demonstrated that our system is capable of detecting and confining various attacks that affect the core network protocols. We have also demonstrated that our approach is capable of rapid attack detection. Also, it has been proven that the inclusion of the proposed detection mechanisms significantly increases the effort the attacker has to introduce in order to compromise the network. Finally we can conclude that, to all intents and purposes, this thesis offers a useful and applicable knowledge in real-life environments that allows us to maximize the performance of any system based on a TRS. Thus, we deal with the main deficiency of this discipline: the lack of a common and complete base of knowledge and the lack of a methodology for the development of TRS that allow us to analyze, design, secure and deploy TRS in a systematic way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Taking advantage of economic opportunities has led to numerous conflicts between society and business in various geographies of the world. Companies have developed social responsibility programs to prevent and manage these types of problems. However, some authors comment that these programs lack a strategic vision. Starting with the Working with People model, created for the field of rural development planning, this paper proposes a methodology to prevent the generation of social conflicts from business strategy: the territorial dimension. The proposal emphasizes that local development support prevents the generation of social conflicts. Finally, an experience in Peru, a country that has been characterized in recent years by high economic growth and also by the presence of social conflicts that have stopped entrepreneurship is analyzed.