22 resultados para Instituto Médico Nacional (México)
em Universidad Politécnica de Madrid
Resumo:
Esta metodología se ha desarrollado en el marco de un proyecto que es el objeto del Convenio Específico de Colaboración entre el Instituto Geográfico Nacional y la Escuela de Topografía de la Universidad Politécnica de Madrid relativo a la investigación, desarrollo, formación y difusión de conocimientos en el campo de las tecnologías de la información geográfica (TIG) para la investigación y desarrollo de la tecnología y metodología adecuada para la optimización de la información de la Base de Datos de Líneas Límite de la Dirección General del Instituto Geográfico Nacional. El fin fundamental del mismo es desarrollar una metodología para mejorar la precisión de la Base de Datos de Líneas Límite que tiene el Instituto Geográfico Nacional. La exigencia actual de calidad y seguridad en la descripción geométrica de las líneas límite obliga a optimizar dicha descripción mediante la aplicación de nuevas tecnologías no existentes en el momento del levantamiento, y al diseño de metodologías adecuadas que, minimizando los tiempos y costes de ejecución, consideren asimismo los distintos agentes que participan en España en la definición de las líneas límite. Para desarrollar dicha metodología será necesario en primer lugar digitalizar la información de los cuadernos de campo y las actas de deslinde existentes en el Instituto Geográfico Nacional, para que sea un trabajo abordable desde las tecnologías actuales; posteriormente, volcar la información referente a las líneas límite sobre ortofotografías a escala 1:5.000, a partir de los datos de los cuadernos de campo digitalizados. Se propondrá un nuevo sistema de gestión, tratamiento y almacenamiento de las líneas límite, con información sobre su linaje (origen de datos, precisión), así como el formato de salida de las propias líneas límite. Para controlar la calidad de la metodología propuesta, se deberá validar la misma mediante un estudio teórico de lamedida de rendimientos y precisiones y su verificación mediante toma de datos en campo. Particularmente, se llevará a cabo dicha validación en un conjunto de 140 líneas límite de 36 municipios de la provincia de Ávila y Segovia (los comprendidos en las hojas 556 y 457 del Mapa Topográfico Nacional 1:50.000). Una vez contrastada la metodología y efectuados los oportunos procesos de refinamiento, se redactarán las conclusiones de todo el proyecto, que englobarán las recomendaciones de trabajo y las precisiones resultantes, los rendimientos de los diferentes procesos y los costes que se generen mediante el empleo de la nueva metodología. ABSTARCT: This paper introduces the development of a methodology for the optimisation of the municipal boundaries database of the Instituto Geográfico Nacional. This project has arisen as part of a collaboration agreement between the Instituto Geográfico Nacional and the Escuela de Topografía of the Universidad Politécnica de Madrid which seeks to promote research, development and training in Geographic Information Technologies. Current quality requirements demand the use of new technologies to improve the accuracy of the geometrical description of municipal boundaries. These technologies didn’t exist when the municipal boundaries were first drawn up. Besides, it is convenient to design an appropriate methodology that minimises both costs and time employed. The two main steps in the process are: first, the conversion of all the available data (fixing boundary minutes and field survey notebooks) into digital format in order to make possible their integration in a CAD system; and second, the display and visual overlay of these digital data over an 1:5000 orthophotography of the study area, to identify the boundary monuments. A new system will be proposed to manage, process and storage municipal boundaries information, including its lineage; an output format for these data will be designed as well. In addition, a quality control will be designed to audit this scheme using Data Analysis and Statistical Inference techniques. Moreover, GPS technology will be used to get some boundary monuments co-ordinates to check the results of the proposed methodology. The complete scheme will be tested in a study area corresponding to Ávila and Segovia provinces comprising 140 boundary segments from 36 municipalities.
Resumo:
En el presente Trabajo Fin de Grado se modeliza la estructura del Pabellón de Gravimetría del Centro Astronómico de Yebes para así poder determinar su influencia sobre los valores de gravedad observados en el interior del Pabellón. El Pabellón de Gravimetría dispone en su interior de una sala dónde se realizan medidas de gravedad sobre siete pilares de hormigón situados a nivel del suelo. Para poder modelizar la sala de medida se ha realizado un levantamiento topográfico con las especificaciones técnicas de una escala 1:100. Tras la realización del levantamiento se han determinado las coordenadas geográficas del centro de los pilares de medida mediante el cálculo de una radiación, pues es necesario conocer éste dato al realizar medidas relativas de gravedad. Para el cálculo de la influencia que genera la estructura del Pabellón sobre las medidas de gravedad observadas en su interior se han creado una serie de programas en lenguaje Java empleando la fórmula de la atracción gravitatoria que genera un prisma (Nagy, 1969). Una vez se han llevado a cabo las observaciones y los cálculos necesarios se concluye que la influencia de la estructura sobre las medidas de la gravedad observadas en el interior del Pabellón no es de gran magnitud. No obstante esnecesario conocerla y así poder corregir los valores observados. Asimismo, se determina cierta desorientación de los pilares de medida con respecto al norte geográfico. El presente Trabajo Fin de Grado permitirá, entre otros, que el Centro de Desarrollos Tecnológicos de Yebes participe en proyectos de carácter internacional. Abstract: In the current Bachelor Thesis, the structure of the Pavellón de Gravimetría del Centro Astronómico de Yebes is moulded in order to determine its influence on the observed values of gravity inside the Pavilion. The Pabellón de Gravimetría holds in its interior a room where gravity measures are made on seven concrete pillars located on the ground level. In order to be able to mould the room, a topographical survey measurement was made on a 1:100 scale. After concluding the topographical survey measurement the geographical coordinates of the centre of the measurement pillars were determined, due to the necessity to know this data when making relative gravity measures. To calculate the influence that the pavilion structure has on the observed gravity measures in its interior generates, a series of programs in Java language have been created using the formula of the gravitational attraction that generates a prism (Nagy, 1969). Once the observations and the necessary calculations have been carried out, it is concluded that the influences of the structure of the Pavilion on the observed gravity measures inside it are not of a considerable magnitude. Despite that, it is necessary to know this to be able to correct the observed values. Also, certain disorientations of the pillars of measurement with respect to the geographical north is determined. The current Bachelor Thesis will allow, among others, the Centre of Technological Developments of Yebes to get involved in projects of international nature.
Resumo:
La estructura de velocidad en los primeros metros debajo de una estación sísmica produce un cierto efecto sobre el sismograma que ésta registra, dicho efecto se denomina función receptora. Si se conoce esta función, es posible, mediante modelización, obtener esa estructura de velocidad. La onda P que genera un telesismo, queda “atrapada” en los últimos kilómetros de su trayectoria en la estructura próxima a la estación que la registra, reverberando entre las discontinuidades de la misma y convirtiéndose, en algunas partes, en onda S. La diferencia de registro existente entre el sismograma del rayo no atrapado (componente vertical del registro) y el producido por este fenómeno (componente radial), sería la función receptora. En este proyecto, se pretende obtener mediante la técnica de Langston (1979),las funciones receptoras de las 55 estaciones que forman la Red Sísmica de banda ancha del Instituto Geográfico Nacional, con el fin de que en trabajos venideros, sea posible conocer de una manera más realista, la estructura de la corteza terrestre bajo el territorio español. Para la obtención de estas funciones, será necesario trabajar con un conjunto de sismogramas registrados por estaciones de banda ancha a partir de telesismos cuyos parámetros focales reúnan una serie de condiciones, definidas y detalladas ampliamente en esta memoria. Tras un proceso de selección, que será constante a lo largo de todo este trabajo,se van a emplear para el cálculo de las funciones receptoras, un total de 5231 sismogramas, generados por 186 telesismos. Para terminar, a modo de ejemplo y con el objetivo de mostrar la finalidad para la que se ha llevado a cabo este proyecto, se procederá a realizar la inversión de la función receptora obtenida para una de las estaciones sísmicas de la red, obteniendo así, un modelo de velocidades aproximado de la estructura de la litosfera existente bajo dicha estación. Abstract: The speed structure in the first layers under a seismic station produces an effect on the seismogram that is registered. This effect is known as receiver function. It is possible to obtain the speed structure if this function is detected through modelling. The P wave, which generates a teleseism, gets trapped in the final kilometres of its trajectory in the nearby station structure, reverberating among its discontinuities and turning into a S wave. The registered difference between the not caught ray seismogram (vertical component of the register) and the one that is produced by this phenomenon (radial component) would be known as receiver function. This project aims to obtain, through the Langston technique (1979), the receiver function of the 55 stations that make up the Broadband Seismic Network of the National Geography Institute to get to know, in a more realistic way, the structure of the Earth’s crust under the Spanish territory. In order to obtain these functions, it will be necessary to work with a number of seismograms registered by the broadband stations whose focal parameters meet the requirements that are well defined and detailed in the development of this memory. After selecting the appropriate data, that would be constant throughout the development of this project, we are going to apply a total of 5231 seismograms obtained by 186 teleseism to calculate the receivers functions. To conclude, and with the aim of demonstrating the purposes and uses that lie behind the development of this project, we will reverse the receiver function for one of the seismic stations, obtaining a approximate speeds’ model of the lithosphere structure that can be found under the previously mentioned station.
Resumo:
El Instituto Geográfico Nacional, por medio del Área de Geodesia, está llevando a cabo el establecimiento de una Red de Estaciones Permanentes GPS que permitan obtener coordenadas muy precisas, así como sus campos de velocidades en un Sistema de Referencia Global (ITRFxx). Dichas estaciones pertenencen a la Red de Estaciones Permanentes de EUREF (EUropean REference Framen) y constituyen el órden cero de la Geodesia Española.
Resumo:
El Instituto Geográfico Nacional, por medio del Área de Geodesia, está llevando a cabo el establecimiento de una Red de Estaciones Permanentes GPS que permitan obtener coordenadas muy precisas, así como sus campos de velocidades en un Sistema de Referencia Global (ITRFxx). Dichas estaciones pertenecen a la Red de Estaciones Permanentes de EUREF (EUropean REference Frame) y constituyen el orden cero de la Geodesia Española.
Resumo:
In this paper we present a global overview of the recent study carried out in Spain for the new hazard map, which final goal is the revision of the Building Code in our country (NCSE-02). The study was carried our for a working group joining experts from The Instituto Geografico Nacional (IGN) and the Technical University of Madrid (UPM) , being the different phases of the work supervised by an expert Committee integrated by national experts from public institutions involved in subject of seismic hazard. The PSHA method (Probabilistic Seismic Hazard Assessment) has been followed, quantifying the epistemic uncertainties through a logic tree and the aleatory ones linked to variability of parameters by means of probability density functions and Monte Carlo simulations. In a first phase, the inputs have been prepared, which essentially are: 1) a project catalogue update and homogenization at Mw 2) proposal of zoning models and source characterization 3) calibration of Ground Motion Prediction Equations (GMPE’s) with actual data and development of a local model with data collected in Spain for Mw < 5.5. In a second phase, a sensitivity analysis of the different input options on hazard results has been carried out in order to have criteria for defining the branches of the logic tree and their weights. Finally, the hazard estimation was done with the logic tree shown in figure 1, including nodes for quantifying uncertainties corresponding to: 1) method for estimation of hazard (zoning and zoneless); 2) zoning models, 3) GMPE combinations used and 4) regression method for estimation of source parameters. In addition, the aleatory uncertainties corresponding to the magnitude of the events, recurrence parameters and maximum magnitude for each zone have been also considered including probability density functions and Monte Carlo simulations The main conclusions of the study are presented here, together with the obtained results in terms of PGA and other spectral accelerations SA (T) for return periods of 475, 975 and 2475 years. The map of the coefficient of variation (COV) are also represented to give an idea of the zones where the dispersion among results are the highest and the zones where the results are robust.
Resumo:
Se estudia la peligrosidad sísmica en la Península Ibérica con una metodología no paramétrica basada en estimadores de densidad kernel; la tasa de actividad se deduce del catálogo, tanto en cuanto a su dependencia espacial (prescindiendo de zonificación) como en relación con la magnitud (obviando la ley de Gutenberg-Richter). El catálogo es el del Instituto Geográfico Nacional, complementado con otros en zonas periféricas, homogeneizado en su cuantificación de los terremotos y eliminando eventos espacial o temporalmente interrelacionados para mantener un modelo temporal de Poisson. La tasa de actividad sísmica viene determinada por la función kernel, el ancho de banda y los períodos efectivos. La tasa resultante se compara con la obtenida usando estadísticas de Gutenberg-Richter y una metodología zonificada. Se han empleado tres leyes de atenuación: una para terremotos profundos y dos para terremotos superficiales, dependiendo de que su magnitud fuera superior o inferior a 5. Los resultados se presentan en forma de mapas de peligrosidad para diversas frecuencias espectrales y períodos de retorno de 475 y 2475 años, lo que permite construir espectros de peligrosidad uniforme.
Resumo:
Se estudia la peligrosidad sísmica en la Península Ibérica con una metodología no paramétrica basada en estimadores de densidad kernel; la tasa de actividad se deduce del catálogo, tanto en cuanto a su dependencia espacial (prescindiendo de zonificación) como en relación con la magnitud (obviando la ley de Gutenberg-Richter). El catálogo es el del Instituto Geográfico Nacional, complementado con otros en zonas periféricas, homogeneizado en su cuantificación de los terremotos y eliminando eventos espacial o temporalmente interrelacionados para mantener un modelo temporal de Poisson. La tasa de actividad sísmica viene determinada por la función kernel, el ancho de banda y los períodos efectivos. La tasa resultante se compara con la obtenida usando estadísticas de Gutenberg-Richter y una metodología zonificada. Se han empleado tres leyes de atenuación: una para terremotos profundos y dos para terremotos superficiales, dependiendo de que su magnitud fuera superior o inferior a 5. Los resultados se presentan en forma de mapas de peligrosidad para diversas frecuencias espectrales y períodos de retorno de 475 y 2475 años, lo que permite construir espectros de peligrosidad uniforme
Resumo:
The Instituto Geográfico Nacional de España, thought its geodesy department, since 1997 has carried out the establisment of a GPS Reference Station Network (ERGPS) delivered all around Spain which allows millimetric co-ordinate results, as well as velocity fields in a Global Reference System (ITRFxx). It serves as support for other geodetic networks. Some of these stations are being integrated into the EUREF (EUropean REference Frame) Permanent Station Network. The ERGPS forms the zero order of the Spanish new geodesy
Resumo:
Este trabajo tiene como objetivos la monitorización en tiempo real de la actividad sísmica, tanto próxima como lejana, a partir de los datos sísmicos registrados por una estación de banda ancha, y el desarrollo de un sistema de difusión interactiva de información actualizada de terremotos, destinado al público general. Ambas fuentes de información se mostrarán a través de una Unidad de Visualización denominada “Monitor Sísmico Interactivo”. El registro de los datos sísmicos se realiza utilizando el sensor de tres componentes de la estación sísmica GUD, perteneciente a la Red Digital de Banda Ancha y transmisión digital del Instituto Geográfico Nacional, instalada en la Basílica del Valle de los Caídos, en lalocalidad de Guadarrama (Madrid). En la E.T.S.I. Topografía, Geodesia y Cartografía se ha instalado un ordenador con conexión a Internet, para la recepción y almacenamiento de los datos, y los programas Scream y Drumplot desarrollados por Guralp, necesarios para la monitorización de la señal sísmica en tiempo real. A partir de estos datos, mediante aplicaciones desarrolladas bajo programación Linux y haciendo uso de las herramientas que ofrece el software SAC (Seismic Analysis Code), se genera además un registro gráfico y una película animada de dicha segmentación para cada evento. Se ha configurado un servidor de correo y una cuenta para la recepción de dos tipos de mensajes de correo, enviados desde la sede central del Instituto Geográfico Nacional, con la información de los eventos registrados por GUD una vez revisados: - Mensajes enviados diariamente, con un listado de eventos ocurridos en los 30 últimos días. - Mensajes con la información en cuasi tiempo real de la última alerta sísmica. Se ha desarrollado el programa “saco” para la gestión del correo recibido que analiza la información sísmica, la almacena en ficheros y ejecuta sobre ellos las aplicaciones de dibujo. Estas aplicaciones han sido previamente desarrolladas bajo programación Linux y software GMT (Generic Mapping Tools), y a partir de ellas se generan automáticamente las distintas imágenes que se visualizan en el Monitor Sísmico: un mapa de sismicidad próxima en la Península Ibérica, un mapa de sismicidad lejana en el mundo, un mapa de detalle para localizar y representar la última alerta generada, los listados con la información de los eventos representados en los mapas, los registros gráficos y las películas animadas de dichos sismogramas. Monitor Sísmico Interactivo ha sido desarrollado para ofrecer además la posibilidad de interactuar con la Unidad de Visualización: se ha creado una base de datos para uso científico donde se almacenan todos los eventos registrados por GUD. Así el usuario puede realizar una petición, a través del envío de un mensaje de correo, que le permite visualizar de forma instantánea las imágenes que muestran la información de cualquier terremoto de su interés. ABSTRACT This study is aimed at real-time monitoring of both near and distant seismic activityfrom the seismic data recorded by a broadband seismic station, and the development of an interactive broadcast system of updated information of earthquakes, for the general public. Bothsources of information are displayed through a display unit called "Interactive Seismic Monitor". The seismic data recording is carried out by using the three-component sensor of the GUD seismic station, which belongs to the Digital Network Broadband and digital broadcast of the National Geographic Institute, housed in the Basilica of The Valley of the Fallen, in the town of Guadarrama (Madrid). A computer with Internet connection has been installed in E.T.S.I. Surveying, Geodesy and Cartography for receiving and storing data, together with Scream and Drumplot programs, developed by Guralp, which are necessary for monitoring the real time seismic signal. Based on the data collected, through programming applications developed under Linux system and using the software tools provided by the SAC (Seismic Analysis Code), a chart recorder and an animated gif image of the segmentation for each event are also generated. A mail server and a mail account have been configured for the receipt of two types of email messages, sent from the National Geographic Institute head office, with the information of the events recorded by GUD after being reviewed: - Messages sent daily, providing a list of events in the past 30 days. - Messages containing information on near real-time seismic of the last seismic alert. A program called "saco" has also been developed for handling mail received that analyzes the seismic data, which stores it in files and runs drawing applications on them. These applications have been previously developed under Linux system and software programming GMT (Generic Mapping Tools), and from them different images that are displayed on the Seismic Monitor are automatically generated: a near seismicity Iberian peninsula map, a distant seismicity world map, a detailed map to locate and represent the last seismic alert generated, the lists with the information of the events depicted in the maps,together with the charts and the animated gif image of such seismograms. Interactive Seismic Monitor has been developed to offer any user the possibility of interacting with the display unit: a database has been created for scientific use which stores all the events recorded by GUD. Thus, any user could make a request, by sending an e-mail that allows them to view instantly all the images showing the information of any earthquake of interest on the display unit.
Resumo:
El Nomenclátor Geográfico Básico de España (NGBE) es un proyecto desarrollado por el Registro Central de Cartografía (RCC) del Instituto Geográfico Nacional (IGN) en cumplimiento con lo establecido en el Real Decreto 1545/2007, de 23 de noviembre, por el cual se regula el Sistema Cartográfico Nacional. La formación de la primera versión del Nomenclátor Geográfico Básico de España se ha realizado en el período comprendido entre los años 2010 y 2012 y ha consistido en la depuración de los nombres geográficos procedentes de la cartografía del Instituto Geográfico Nacional a escala 1:25.000 a través de una metodología generada en el marco de este proyecto y estructurando el resultado en función del modelo de nomenclátor de INSPIRE (D2.8.I.3 INSPIRE Data Specification on Geographical Names-Guidelines).
Resumo:
The seismic hazard of the Iberian Peninsula is analysed using a nonparametric methodology based on statistical kernel functions; the activity rate is derived from the catalogue data, both its spatial dependence (without a seismogenetic zonation) and its magnitude dependence (without using Gutenberg–Richter's law). The catalogue is that of the Instituto Geográfico Nacional, supplemented with other catalogues around the periphery; the quantification of events has been homogenised and spatially or temporally interrelated events have been suppressed to assume a Poisson process. The activity rate is determined by the kernel function, the bandwidth and the effective periods. The resulting rate is compared with that produced using Gutenberg–Richter statistics and a zoned approach. Three attenuation laws have been employed, one for deep sources and two for shallower events, depending on whether their magnitude was above or below 5. The results are presented as seismic hazard maps for different spectral frequencies and for return periods of 475 and 2475 yr, which allows constructing uniform hazard spectra.
Resumo:
El presente proyecto fin de carrera trata del estudio de los parámetros de sismicidad en la Península Ibérica y América Central, realizando un análisis de su variación en el espacio y en el tiempo. Con estos análisis se podrá determinar la continuidad temporal y la homogeneidad espacial de los parámetros sísmicas de los territorios de estudio, de acuerdo con la información contenida en los catálogos sísmicos. En este proyecto se parte del estudio de los catálogos sísmicos disponibles (catálogo del Instituto Geográfico Nacional de España y catálogo del proyecto RESIS II) y se realizan los análisis de completitud pertinentes, a fin de eliminar información de los catálogos que pueda desvirtuar los resultados obtenidos. Se considera que la sismicidad sigue modelo de Gutenberg-Richter, que establece que la distribución de frecuencias de terremotos con la magnitud responde a una relación lineal entre el (logaritmo del) número acumulado de eventos y la magnitud. De este modelo se obtienen tres parámetros que caracterizan la sismicidad de una zona: el parámetro beta, la tasa acumulada de ocurrencia de terremotos y la magnitud máxima. Se diseña un método para calcular el valor de estos parámetros sísmicos en los territorios considerados, y se implementan diferentes filtros espaciales y temporales para poder determinar la variabilidad espacial y temporal de los valores de los parámetros de sismicidad. Se aplica el método de estimación de parámetros de sismicidad en dos zonas de diferentes características sísmicas: una como la Península Ibérica, donde hay menos actividad sísmica pero hay datos de un periodo de tiempo mayor; y América Central,donde el catálogo no es tan extenso temporalmente, y sin embargo, hay una mayor actividad sísmica. Los resultados del estudio serán de utilidad para la caracterización de fuentes sísmicas en estudios de peligrosidad sísmica, bien sea siguiendo modelos zonificados que consideran que la sismicidad es un proceso de Poisson (para lo cual se necesita un catálogo depurado, como el que se usa en este proyecto para América Central), bien sea para modelos no zonificados, que se nutren de un catálogo sin depurar de réplicas y premonitores (como el que se usa en este proyecto para España).
Resumo:
Este trabajo, «Una aproximación a Ia integración en Open Data de los recursos Inspire de Ia IDEE », tiene por objetivo el construir un puente entre las Infraestructuras de Datos Espaciales (IDE) y el mundo de los «datos abiertos » aprovechando el marco legal de la Reutilización de la Información del Sector Público (RISP). Tras analizar qué es RISP y en particular los datos abiertos, y cómo se implementa en distintas Administraciones, se estudian los requisitos técnicos y legales necesarios para construir el «traductor» que permita canalizar la información IDE en el portal central de reutilización de información español datos.gob.es, dando una mayor visibilidad a los recursos INSPIRE. El trabajo se centra específicamente en dos puntos: en primer lugar en proporcionar y documentar la solución técnica que sirva en primera instancia para que el Instituto Geográfico Nacional aporte con más eficiencia sus recursos a datos.gob.es. En segundo lugar, a estudiar la aplicabilidad de esta misma solución al ámbito de la IDE de España (IDEE), señalando problemas detectados en el análisis de su contenido y sugiriendo recomendaciones para minimizar los problemas de su potencial reutilización. ABSTRACT: This work titled «Analysis of the integration of INSPIRE resources coming from Spanish Spatial Data Infrastructure within the National Public Sector Information portal», aims to build a bridge between the Spatial Data Infrastructures (SDI ) and the world of "Open Data" taking advantage of the legal framework on the Re-use of Public Sector Information (PSI) . After analyzing what PSI reuse and Open Data is and how it is implemented by different administrations, a study to extract the technical and legal requirements is done to build the "translator" that will allow adding SDI resources within the Spanish portal for the PSI reuse data .gob.es while giving greater visibility to INSPIRE. This document specifically focuses on two aspects: first to provide and document the technical solution that serves primarily for the National Geographic Institute to supply more efficiently its resources to datos.gob.es. Secondly, to study the applicability of the proposed solution to the whole Spanish SDI (IDEE), noting identified problems and suggesting recommendations to minimize problems of its potential reuse.
Resumo:
The seismic hazard of the Iberian Peninsula is analysed using a nonparametric methodology based on statistical kernel functions; the activity rate is derived from the catalogue data, both its spatial dependence (without a seismogenic zonation) and its magnitude dependence (without using Gutenberg–Richter's relationship). The catalogue is that of the Instituto Geográfico Nacional, supplemented with other catalogues around the periphery; the quantification of events has been homogenised and spatially or temporally interrelated events have been suppressed to assume a Poisson process. The activity rate is determined by the kernel function, the bandwidth and the effective periods. The resulting rate is compared with that produced using Gutenberg–Richter statistics and a zoned approach. Three attenuation relationships have been employed, one for deep sources and two for shallower events, depending on whether their magnitude was above or below 5. The results are presented as seismic hazard maps for different spectral frequencies and for return periods of 475 and 2475 yr, which allows constructing uniform hazard spectra