45 resultados para Institute for Numerical Analysis (U.S.)

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the common pathologies of brickwork masonry structural elements and walls is the cracking associated with the differential settlements and/or excessive deflections of the slabs along the life of the structure. The scarce capacity of the masonry in order to accompany the structural elements that surround it, such as floors, beams or foundations, in their movements makes the brickwork masonry to be an element that frequently presents this kind of problem. This problem is a fracture problem, where the wall is cracked under mixed mode fracture: tensile and shear stresses combination, under static loading. Consequently, it is necessary to advance in the simulation and prediction of brickwork masonry mechanical behaviour under tensile and shear loading. The quasi-brittle behaviour of the brickwork masonry can be studied using the cohesive crack model whose application to other quasibrittle materials like concrete has traditionally provided very satisfactory results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Axisymmetric shells are analyzed by means of one-dimensional continuum elements by using the analogy between the bending of shells and the bending of beams on elastic foundation. The mathematical model is formulated in the frequency domain. Because the solution of the governing equations of vibration of beams are exact, the spatial discretization only depends on geometrical or material considerations. For some kind of situations, for example, for high frequency excitations, this approach may be more convenient than other conventional ones such as the finite element method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El hormigón es uno de los materiales de construcción más empleados en la actualidad debido a sus buenas prestaciones mecánicas, moldeabilidad y economía de obtención, entre otras ventajas. Es bien sabido que tiene una buena resistencia a compresión y una baja resistencia a tracción, por lo que se arma con barras de acero para formar el hormigón armado, material que se ha convertido por méritos propios en la solución constructiva más importante de nuestra época. A pesar de ser un material profusamente utilizado, hay aspectos del comportamiento del hormigón que todavía no son completamente conocidos, como es el caso de su respuesta ante los efectos de una explosión. Este es un campo de especial relevancia, debido a que los eventos, tanto intencionados como accidentales, en los que una estructura se ve sometida a una explosión son, por desgracia, relativamente frecuentes. La solicitación de una estructura ante una explosión se produce por el impacto sobre la misma de la onda de presión generada en la detonación. La aplicación de esta carga sobre la estructura es muy rápida y de muy corta duración. Este tipo de acciones se denominan cargas impulsivas, y pueden ser hasta cuatro órdenes de magnitud más rápidas que las cargas dinámicas impuestas por un terremoto. En consecuencia, no es de extrañar que sus efectos sobre las estructuras y sus materiales sean muy distintos que las que producen las cargas habitualmente consideradas en ingeniería. En la presente tesis doctoral se profundiza en el conocimiento del comportamiento material del hormigón sometido a explosiones. Para ello, es crucial contar con resultados experimentales de estructuras de hormigón sometidas a explosiones. Este tipo de resultados es difícil de encontrar en la literatura científica, ya que estos ensayos han sido tradicionalmente llevados a cabo en el ámbito militar y los resultados obtenidos no son de dominio público. Por otra parte, en las campañas experimentales con explosiones llevadas a cabo por instituciones civiles el elevado coste de acceso a explosivos y a campos de prueba adecuados no permite la realización de ensayos con un elevado número de muestras. Por este motivo, la dispersión experimental no es habitualmente controlada. Sin embargo, en elementos de hormigón armado sometidos a explosiones, la dispersión experimental es muy acusada, en primer lugar, por la propia heterogeneidad del hormigón, y en segundo, por la dificultad inherente a la realización de ensayos con explosiones, por motivos tales como dificultades en las condiciones de contorno, variabilidad del explosivo, o incluso cambios en las condiciones atmosféricas. Para paliar estos inconvenientes, en esta tesis doctoral se ha diseñado un novedoso dispositivo que permite ensayar hasta cuatro losas de hormigón bajo la misma detonación, lo que además de proporcionar un número de muestras estadísticamente representativo, supone un importante ahorro de costes. Con este dispositivo se han ensayado 28 losas de hormigón, tanto armadas como en masa, de dos dosificaciones distintas. Pero además de contar con datos experimentales, también es importante disponer de herramientas de cálculo para el análisis y diseño de estructuras sometidas a explosiones. Aunque existen diversos métodos analíticos, hoy por hoy las técnicas de simulación numérica suponen la alternativa más avanzada y versátil para el cálculo de elementos estructurales sometidos a cargas impulsivas. Sin embargo, para obtener resultados fiables es crucial contar con modelos constitutivos de material que tengan en cuenta los parámetros que gobiernan el comportamiento para el caso de carga en estudio. En este sentido, cabe destacar que la mayoría de los modelos constitutivos desarrollados para el hormigón a altas velocidades de deformación proceden del ámbito balístico, donde dominan las grandes tensiones de compresión en el entorno local de la zona afectada por el impacto. En el caso de los elementos de hormigón sometidos a explosiones, las tensiones de compresión son mucho más moderadas, siendo las tensiones de tracción generalmente las causantes de la rotura del material. En esta tesis doctoral se analiza la validez de algunos de los modelos disponibles, confirmando que los parámetros que gobiernan el fallo de las losas de hormigón armado ante explosiones son la resistencia a tracción y su ablandamiento tras rotura. En base a los resultados anteriores se ha desarrollado un modelo constitutivo para el hormigón ante altas velocidades de deformación, que sólo tiene en cuenta la rotura por tracción. Este modelo parte del de fisura cohesiva embebida con discontinuidad fuerte, desarrollado por Planas y Sancho, que ha demostrado su capacidad en la predicción de la rotura a tracción de elementos de hormigón en masa. El modelo ha sido modificado para su implementación en el programa comercial de integración explícita LS-DYNA, utilizando elementos finitos hexaédricos e incorporando la dependencia de la velocidad de deformación para permitir su utilización en el ámbito dinámico. El modelo es estrictamente local y no requiere de remallado ni conocer previamente la trayectoria de la fisura. Este modelo constitutivo ha sido utilizado para simular dos campañas experimentales, probando la hipótesis de que el fallo de elementos de hormigón ante explosiones está gobernado por el comportamiento a tracción, siendo de especial relevancia el ablandamiento del hormigón. Concrete is nowadays one of the most widely used building materials because of its good mechanical properties, moldability and production economy, among other advantages. As it is known, it has high compressive and low tensile strengths and for this reason it is reinforced with steel bars to form reinforced concrete, a material that has become the most important constructive solution of our time. Despite being such a widely used material, there are some aspects of concrete performance that are not yet fully understood, as it is the case of its response to the effects of an explosion. This is a topic of particular relevance because the events, both intentional and accidental, in which a structure is subjected to an explosion are, unfortunately, relatively common. The loading of a structure due to an explosive event occurs due to the impact of the pressure shock wave generated in the detonation. The application of this load on the structure is very fast and of very short duration. Such actions are called impulsive loads, and can be up to four orders of magnitude faster than the dynamic loads imposed by an earthquake. Consequently, it is not surprising that their effects on structures and materials are very different than those that cause the loads usually considered in engineering. This thesis broadens the knowledge about the material behavior of concrete subjected to explosions. To that end, it is crucial to have experimental results of concrete structures subjected to explosions. These types of results are difficult to find in the scientific literature, as these tests have traditionally been carried out by armies of different countries and the results obtained are classified. Moreover, in experimental campaigns with explosives conducted by civil institutions the high cost of accessing explosives and the lack of proper test fields does not allow for the testing of a large number of samples. For this reason, the experimental scatter is usually not controlled. However, in reinforced concrete elements subjected to explosions the experimental dispersion is very pronounced. First, due to the heterogeneity of concrete, and secondly, because of the difficulty inherent to testing with explosions, for reasons such as difficulties in the boundary conditions, variability of the explosive, or even atmospheric changes. To overcome these drawbacks, in this thesis we have designed a novel device that allows for testing up to four concrete slabs under the same detonation, which apart from providing a statistically representative number of samples, represents a significant saving in costs. A number of 28 slabs were tested using this device. The slabs were both reinforced and plain concrete, and two different concrete mixes were used. Besides having experimental data, it is also important to have computational tools for the analysis and design of structures subjected to explosions. Despite the existence of several analytical methods, numerical simulation techniques nowadays represent the most advanced and versatile alternative for the assessment of structural elements subjected to impulsive loading. However, to obtain reliable results it is crucial to have material constitutive models that take into account the parameters that govern the behavior for the load case under study. In this regard it is noteworthy that most of the developed constitutive models for concrete at high strain rates arise from the ballistic field, dominated by large compressive stresses in the local environment of the area affected by the impact. In the case of concrete elements subjected to an explosion, the compressive stresses are much more moderate, while tensile stresses usually cause material failure. This thesis discusses the validity of some of the available models, confirming that the parameters governing the failure of reinforced concrete slabs subjected to blast are the tensile strength and softening behaviour after failure. Based on these results we have developed a constitutive model for concrete at high strain rates, which only takes into account the ultimate tensile strength. This model is based on the embedded Cohesive Crack Model with Strong Discontinuity Approach developed by Planas and Sancho, which has proved its ability in predicting the tensile fracture of plain concrete elements. The model has been modified for its implementation in the commercial explicit integration program LS-DYNA, using hexahedral finite elements and incorporating the dependence of the strain rate, to allow for its use in dynamic domain. The model is strictly local and does not require remeshing nor prior knowledge of the crack path. This constitutive model has been used to simulate two experimental campaigns, confirming the hypothesis that the failure of concrete elements subjected to explosions is governed by their tensile response, being of particular relevance the softening behavior of concrete.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper summarizes the research activities focused on the behaviour of concrete and concrete structures subjected to blast loading carried out by the Department of Materials Science of the Technical University of Madrid (PUM). These activities comprise the design and construction of a test bench that allows for testing up to four planar concrete specimens with one single explosion, the study of the performance of different protection concepts for concrete structures and, finally, the development of a numerical model for the simulation of concrete structural elements subjected to blast. Up to date 6 different types of concrete have been studied, from plain normal strength concrete, to high strength concrete, including also fibre reinforced concretes with different types of fibres. The numerical model is based on the Cohesive Crack Model approach, and has been developed for the LSDYNA finite element code through a user programmed subroutine. Despite its simplicity, the model is able to predict the failure patterns of the concrete slabs tested with a high level of accuracy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical simulations of axisymmetric reactive jets with one-step Arrhenius kinetics are used to investigate the problem of deflagration initiation in a premixed fuel–air mixture by the sudden discharge of a hot jet of its adiabatic reaction products. For the moderately large values of the jet Reynolds number considered in the computations, chemical reaction is seen to occur initially in the thin mixing layer that separates the hot products from the cold reactants. This mixing layer is wrapped around by the starting vortex, thereby enhancing mixing at the jet head, which is followed by an annular mixing layer that trails behind, connecting the leading vortex with the orifice rim. A successful deflagration is seen to develop for values of the orifice radius larger than a critical value a c in the order of the flame thickness of the planar deflagration δL. Introduction of appropriate scales provides the dimensionless formulation of the problem, with flame initiation characterised in terms of a critical Damköhler number Δc=(a d/δL)2, whose parametric dependence is investigated. The numerical computations reveal that, while the jet Reynolds number exerts a limited influence on the criticality conditions, the effect of the reactant diffusivity on ignition is much more pronounced, with the value of Δc increasing significantly with increasing Lewis numbers. The reactant diffusivity affects also the way ignition takes place, so that for reactants with the flame develops as a result of ignition in the annular mixing layer surrounding the developing jet stem, whereas for highly diffusive reactants with Lewis numbers sufficiently smaller than unity combustion is initiated in the mixed core formed around the starting vortex. The analysis provides increased understanding of deflagration initiation processes, including the effects of differential diffusion, and points to the need for further investigations corporating detailed chemistry models for specific fuel–air mixtures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the advent of the computer into the engineering field, the application of the numerical methods to the solution of engineering problems has grown very rapidly. Among the different computer methods of structural analysis the Finite Element (FEM) has been predominantly used. Shells and space structures are very attractive and have been constructed to solve a large variety of functional problems (roofs, industrial building, aqueducts, reservoirs, footings etc). In this type of structures aesthetics, structural efficiency and concept play a very important role. This class of structures can be divided into three main groups, namely continuous (concrete) shells, space frames and tension (fabric, pneumatic, cable etc )structures. In the following only the current applications of the FEM to the analysis of continuous shell structures will be discussed. However, some of the comments on this class of shells can be also applied to some extend to the others, but obviously specific computational problems will be restricted to the continuous shells. Different aspects, such as, the type of elements,input-output computational techniques etc, of the analysis of shells by the FEM will be described below. Clearly, the improvements and developments occurring in general for the FEM since its first appearance in the fifties have had a significative impact on the particular class of structures under discussion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the prediction of pressure and velocity fields on the 2415-3S airfoil which will be used for and unmanned aerial vehicle with internal propulsion system and in this way analyze the air flow through an internal duct of the airfoil using computational fluid dynamics. The main objective is to evaluate the effect of the internal air flow past the airfoil and how this affects the aerodynamic performance by means of lift and drag forces. For this purpose, three different designs of the internal duct were studied; starting from the base 2415-3S airfoil developed in previous investigation, basing on the hypothesis of decreasing the flow separation produced when the propulsive airflow merges the external flow, and in this way obtaining the best configuration. For that purpose, an exhaustive study of the mesh sensitivity was performed. It was used a non-structured mesh since the computational domain is tridimensional and complex. The selected mesh contains approximately 12.5 million elements. Both the computational domain and the numerical solution were made with commercial CAD and CFD software respectively. Air, incompressible and steady was analyzed. The boundary conditions are in concordance with experimental setup in the AF 6109 wind tunnel. The k-ε model is utilized to describe the turbulent flow process as followed in references. Results allowed obtaining pressure and velocity contours as well as lift and drag coefficients and also the location of separation and reattachment regions in some cases for zero degrees of angle of attack on the internal and external surfaces of the airfoil. Finally, the selection of the configuration with the best aerodynamic performance was made, selecting the option without curved baffles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Illinois Institute of Technology (iit) campus, Chicago, by architect Ludwig Mies van der Rohe, is often considered as a transitional work, usually acknowledged as significant for the reorientation of his professional career after he emigrated to the United States. Moreover, its favorable recognition today is somehow indicative of its relevance as a model for urban intervention in the contemporary American city and for contemporary city planning in general, not to mention the profound impact that it had on the cityscape of Chicago. However, today we know it was rather the result of a close collaboration between he and Ludwig Hilberseimer —later on, to be completed with Alfred Caldwell— who merged their personal ideas and expertise in the design for the first time. In addition to this, when one tries to locate the design within its own historical context and evaluate the sources of its approach to it, some contradictions arise. The major impact of the images produced by Mies to promote its realization —widely disseminated in most contemporary architectural periodicals— probably outshined the particular circumstances in which the design was conceived. In fact, it would never be materialized as originally presented, but it was, instead, continuously reworked according to land availability in the site —a circumstance often ignored by subsequent architectural critic, that enthusiastically praised the design even before it was fully completed. One of the main consequences of looking at iit from such a standpoint is that, when historically contextualized, one can appreciate that, due to the urban scale of its implementation process, the design had to face a complex reality very different to that initially planned by the architect, often far from his actual possibilities of intervention. Such approach is in contradiction with the common description of the design as a ‘tabula rasa’ that allegedly would have been formulated on the basis of a full denial of its context. On the contrary, the ever-changing circumstances of the design motivated a necessary re-interpretation of the relation between its executed fragments, in order to keep the original identity of the whole in an ever-changing context. This situation implied a continuous transformation of the design by means of a steady re-composition of its elements: as the number of completed buildings increased in its successive stages, their relation to their site-specific context changed, in a very particular process that these lines try to delineate. Requiring decades to be erected, neither of its authors would ever see the design finished as planned, partially because of the difficulties in acquiring the extension of land that it required. Considering the study of this process as able to provide a valuable gateway to understand the urban discourse that the architects entailed, the aim of these lines is to analyze the problems that the iit campus design had to face. As a starting point, a relationship between practice and theory in the activity of the authors implied in iit campus design has been assumed. Far from being interrupted during World War ii, strong historical evidence can be found to infer that both were developed in parallel. Consequently, the historical sequence of the preserved testimonies has been put into context, as well as their transformation while Mies remained in charge for the campus Master Plan. Notably, when seen from this perspective, some ideas already expressed during his previous European practice were still present during the design process. Particularly, Mies's particular understanding of certain architectural concepts — such as those of ‘order’ and ‘structure’—can be traced paralleling the theories about urban planning from his collaborators, a fact that possibly facilitated the campus successful development. The study of the way these ideas were actually redeveloped and modified in the American urban context, added to the specific process of the implementation of iit campus design, sheds a new light for a critical interpretation of the reasons that made it possible, and of the actual responsibility of Mies's collaborators in its overall development and final completion. RESUMEN El campus del Illinois Institute of Technology (iit) de Chicago, obra del arquitecto Ludwig Mies van der Rohe, es a menudo considerado como una obra de transición que, por lo general, ha venido siendo reconocida como relevante para la reorientación de su carrera profesional posterior a su exilio en los Estados Unidos. El reconocimiento del que goza el proyecto es indicativo, de algún modo, de su importancia como modelo para la intervención urbana en la ciudad norteamericana contemporánea y el planeamiento de la ciudad contemporánea en general, sin olvidar el profundo impacto que ha tenido sobre el paisaje urbano de Chicago. Sin embargo, hoy sabemos que el resultado se benefició de su estrecha colaboración con Ludwig Hilberseimer y se completaría más tarde con la de Alfred Caldwell, quienes unieron sus ideas y experiencia profesional en el proyecto por primera vez. Asimismo, cuando se intenta ubicar el proyecto dentro de su propio contexto histórico y evaluar los criterios de su manera de abordarlo, surgen algunas contradicciones. El considerable impacto de las imágenes producidas por Mies para impulsar su ejecución —ampliamente difundidas en la mayoría de publicaciones de arquitectura de la época— probablemente eclipsó las particulares circunstancias en las que el proyecto fue concebido. De hecho, nunca llegó a materializarse tal y como fue inicialmente presentado. Por contra, fue reelaborado de manera continua, de acuerdo a la disponibilidad de suelo en el emplazamiento; una circunstancia a menudo ignorada por la crítica posterior, que elogió con entusiasmo el proyecto antes siquiera de que fuese terminado. Una de las principales consecuencias de contemplar el iit desde semejante punto de vista es que, una vez contextualizada históricamente su puesta en obra, se puede apreciar que el arquitecto tuvo que enfrentarse a una compleja realidad urbana muy diferente a la inicialmente prevista —probablemente debido a la escala del proyecto— a menudo lejos de sus posibilidades reales de intervención. Este enfoque contradice la descripción habitual del proyecto como una ‘tabula rasa’, que supuestamente se habría formulado sobre la base de una negación completa de su contexto. Por el contrario, las circunstancias cambiantes del proyecto obligaron una necesaria reinterpretación de la relación entre sus frag mentos ejecutados, con el fin de mantener la identidad original del conjunto en un contexto en constante cambio. Esta situación implicó una continua transformación del proyecto por medio de una permanente re-composición de sus elementos: según se incrementaba el número de edificios construidos en las etapas sucesivas de desarrollo del conjunto, variaba su relación con el contexto específico en que se emplazaban, en un proceso muy particular que estas líneas tratan de perfilar. Al necesitar décadas para ser levantado, ninguno de sus autores vería el conjunto terminado según lo planificado, en parte debido a las dificultades para la adquisición de la extensión de suelo que demandaba. Asumiendo que el estudio de este proceso es capaz de proporcionar una valiosa puerta de entrada para elucidar el discurso urbano asumido por los Mies, el objetivo de estas líneas es analizar los problemas a los que el proyecto del campus del iit tuvo que enfrentarse. Como punto de partida, se ha supuesto una relación entre la práctica y la teoría en la actividad de los autores implicados en el proyecto del campus del iit. Lejos de interrumpirse durante la Segunda Guerra Mundial, existen evidencias históricas sólidas para deducir que ambas vertientes se desarrollaron en paralelo. En consecuencia, se ha contextualizado la secuencia histórica de los testimonios conservados, así como su transformación durante el periodo en que Mies estuvo a cargo del Plan General del campus. Significativamente, al ser contempladas bajo esta perspectiva, algunas ideas ya expresadas durante su práctica europea anterior resultan aún presentes durante la redacción del proyecto. En concreto, se puede trazar un paralelismo entre la comprensión particular de Mies de ciertos conceptos arquitectónicos —como los de ‘orden’ y ‘estructura’— y las teorías sobre el urbanismo de sus colaboradores, hecho que posiblemente facilitó el exitoso desarrollo del proyecto. El estudio de la manera en que estas ideas fueron reelaboradas y modificadas en el contexto urbano estadounidense, sumado al proceso específico de su aplicación en el proyecto del campus del iit, arroja una nueva luz para una interpretación crítica tanto de las razones que lo hicieron posible, como del papel real que los colaboradores de Mies tuvieron en su desarrollo y ejecución final.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge–Kutta total variation diminishing for time integration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, Computational Fluid Dynamics (CFD) solvers are widely used within the industry to model fluid flow phenomenons. Several fluid flow model equations have been employed in the last decades to simulate and predict forces acting, for example, on different aircraft configurations. Computational time and accuracy are strongly dependent on the fluid flow model equation and the spatial dimension of the problem considered. While simple models based on perfect flows, like panel methods or potential flow models can be very fast to solve, they usually suffer from a poor accuracy in order to simulate real flows (transonic, viscous). On the other hand, more complex models such as the full Navier- Stokes equations provide high fidelity predictions but at a much higher computational cost. Thus, a good compromise between accuracy and computational time has to be fixed for engineering applications. A discretisation technique widely used within the industry is the so-called Finite Volume approach on unstructured meshes. This technique spatially discretises the flow motion equations onto a set of elements which form a mesh, a discrete representation of the continuous domain. Using this approach, for a given flow model equation, the accuracy and computational time mainly depend on the distribution of nodes forming the mesh. Therefore, a good compromise between accuracy and computational time might be obtained by carefully defining the mesh. However, defining an optimal mesh for complex flows and geometries requires a very high level expertize in fluid mechanics and numerical analysis, and in most cases a simple guess of regions of the computational domain which might affect the most the accuracy is impossible. Thus, it is desirable to have an automatized remeshing tool, which is more flexible with unstructured meshes than its structured counterpart. However, adaptive methods currently in use still have an opened question: how to efficiently drive the adaptation ? Pioneering sensors based on flow features generally suffer from a lack of reliability, so in the last decade more effort has been made in developing numerical error-based sensors, like for instance the adjoint-based adaptation sensors. While very efficient at adapting meshes for a given functional output, the latter method is very expensive as it requires to solve a dual set of equations and computes the sensor on an embedded mesh. Therefore, it would be desirable to develop a more affordable numerical error estimation method. The current work aims at estimating the truncation error, which arises when discretising a partial differential equation. These are the higher order terms neglected in the construction of the numerical scheme. The truncation error provides very useful information as it is strongly related to the flow model equation and its discretisation. On one hand, it is a very reliable measure of the quality of the mesh, therefore very useful in order to drive a mesh adaptation procedure. On the other hand, it is strongly linked to the flow model equation, so that a careful estimation actually gives information on how well a given equation is solved, which may be useful in the context of _ -extrapolation or zonal modelling. The following work is organized as follows: Chap. 1 contains a short review of mesh adaptation techniques as well as numerical error prediction. In the first section, Sec. 1.1, the basic refinement strategies are reviewed and the main contribution to structured and unstructured mesh adaptation are presented. Sec. 1.2 introduces the definitions of errors encountered when solving Computational Fluid Dynamics problems and reviews the most common approaches to predict them. Chap. 2 is devoted to the mathematical formulation of truncation error estimation in the context of finite volume methodology, as well as a complete verification procedure. Several features are studied, such as the influence of grid non-uniformities, non-linearity, boundary conditions and non-converged numerical solutions. This verification part has been submitted and accepted for publication in the Journal of Computational Physics. Chap. 3 presents a mesh adaptation algorithm based on truncation error estimates and compares the results to a feature-based and an adjoint-based sensor (in collaboration with Jorge Ponsín, INTA). Two- and three-dimensional cases relevant for validation in the aeronautical industry are considered. This part has been submitted and accepted in the AIAA Journal. An extension to Reynolds Averaged Navier- Stokes equations is also included, where _ -estimation-based mesh adaptation and _ -extrapolation are applied to viscous wing profiles. The latter has been submitted in the Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. Keywords: mesh adaptation, numerical error prediction, finite volume Hoy en día, la Dinámica de Fluidos Computacional (CFD) es ampliamente utilizada dentro de la industria para obtener información sobre fenómenos fluidos. La Dinámica de Fluidos Computacional considera distintas modelizaciones de las ecuaciones fluidas (Potencial, Euler, Navier-Stokes, etc) para simular y predecir las fuerzas que actúan, por ejemplo, sobre una configuración de aeronave. El tiempo de cálculo y la precisión en la solución depende en gran medida de los modelos utilizados, así como de la dimensión espacial del problema considerado. Mientras que modelos simples basados en flujos perfectos, como modelos de flujos potenciales, se pueden resolver rápidamente, por lo general aducen de una baja precisión a la hora de simular flujos reales (viscosos, transónicos, etc). Por otro lado, modelos más complejos tales como el conjunto de ecuaciones de Navier-Stokes proporcionan predicciones de alta fidelidad, a expensas de un coste computacional mucho más elevado. Por lo tanto, en términos de aplicaciones de ingeniería se debe fijar un buen compromiso entre precisión y tiempo de cálculo. Una técnica de discretización ampliamente utilizada en la industria es el método de los Volúmenes Finitos en mallas no estructuradas. Esta técnica discretiza espacialmente las ecuaciones del movimiento del flujo sobre un conjunto de elementos que forman una malla, una representación discreta del dominio continuo. Utilizando este enfoque, para una ecuación de flujo dado, la precisión y el tiempo computacional dependen principalmente de la distribución de los nodos que forman la malla. Por consiguiente, un buen compromiso entre precisión y tiempo de cálculo se podría obtener definiendo cuidadosamente la malla, concentrando sus elementos en aquellas zonas donde sea estrictamente necesario. Sin embargo, la definición de una malla óptima para corrientes y geometrías complejas requiere un nivel muy alto de experiencia en la mecánica de fluidos y el análisis numérico, así como un conocimiento previo de la solución. Aspecto que en la mayoría de los casos no está disponible. Por tanto, es deseable tener una herramienta que permita adaptar los elementos de malla de forma automática, acorde a la solución fluida (remallado). Esta herramienta es generalmente más flexible en mallas no estructuradas que con su homóloga estructurada. No obstante, los métodos de adaptación actualmente en uso todavía dejan una pregunta abierta: cómo conducir de manera eficiente la adaptación. Sensores pioneros basados en las características del flujo en general, adolecen de una falta de fiabilidad, por lo que en la última década se han realizado grandes esfuerzos en el desarrollo numérico de sensores basados en el error, como por ejemplo los sensores basados en el adjunto. A pesar de ser muy eficientes en la adaptación de mallas para un determinado funcional, este último método resulta muy costoso, pues requiere resolver un doble conjunto de ecuaciones: la solución y su adjunta. Por tanto, es deseable desarrollar un método numérico de estimación de error más asequible. El presente trabajo tiene como objetivo estimar el error local de truncación, que aparece cuando se discretiza una ecuación en derivadas parciales. Estos son los términos de orden superior olvidados en la construcción del esquema numérico. El error de truncación proporciona una información muy útil sobre la solución: es una medida muy fiable de la calidad de la malla, obteniendo información que permite llevar a cabo un procedimiento de adaptación de malla. Está fuertemente relacionado al modelo matemático fluido, de modo que una estimación precisa garantiza la idoneidad de dicho modelo en un campo fluido, lo que puede ser útil en el contexto de modelado zonal. Por último, permite mejorar la precisión de la solución resolviendo un nuevo sistema donde el error local actúa como término fuente (_ -extrapolación). El presenta trabajo se organiza de la siguiente manera: Cap. 1 contiene una breve reseña de las técnicas de adaptación de malla, así como de los métodos de predicción de los errores numéricos. En la primera sección, Sec. 1.1, se examinan las estrategias básicas de refinamiento y se presenta la principal contribución a la adaptación de malla estructurada y no estructurada. Sec 1.2 introduce las definiciones de los errores encontrados en la resolución de problemas de Dinámica Computacional de Fluidos y se examinan los enfoques más comunes para predecirlos. Cap. 2 está dedicado a la formulación matemática de la estimación del error de truncación en el contexto de la metodología de Volúmenes Finitos, así como a un procedimiento de verificación completo. Se estudian varias características que influyen en su estimación: la influencia de la falta de uniformidad de la malla, el efecto de las no linealidades del modelo matemático, diferentes condiciones de contorno y soluciones numéricas no convergidas. Esta parte de verificación ha sido presentada y aceptada para su publicación en el Journal of Computational Physics. Cap. 3 presenta un algoritmo de adaptación de malla basado en la estimación del error de truncación y compara los resultados con sensores de featured-based y adjointbased (en colaboración con Jorge Ponsín del INTA). Se consideran casos en dos y tres dimensiones, relevantes para la validación en la industria aeronáutica. Este trabajo ha sido presentado y aceptado en el AIAA Journal. También se incluye una extensión de estos métodos a las ecuaciones RANS (Reynolds Average Navier- Stokes), en donde adaptación de malla basada en _ y _ -extrapolación son aplicados a perfiles con viscosidad de alas. Este último trabajo se ha presentado en los Actas de la Institución de Ingenieros Mecánicos, Parte G: Journal of Aerospace Engineering. Palabras clave: adaptación de malla, predicción del error numérico, volúmenes finitos

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The numerical analysis of certain safety related problems presents serious difficulties, since the large number of components present leads to huge finite elementmodels that can only be solved by using large and expensive computers or by making rough approaches to the problem. Tangling, or clashing, in the turbine of a jet engine airplane is an example of such problems. This is caused by the crash and friction between rotor and stator blades in the turbine after an eventual shaft failure. When facing the study of an event through numerical modelling, the accurate simulation of this problem would require the engineer to model all the rotor and stator blades existing in the turbine stage, using a small element size in all pieces. Given that the number of stator and rotor blades is usually around 200, such simulations would require millions of elements. This work presents a new numerical methodology, specifically developed for the accurate modelling of the tangling problem that, depending on the turbine configuration, is able to reduce the number of nodes up to an order of magnitude without losing accuracy. The methodology, which benefits from the cyclic configuration of turbines, is successfully applied to the numerical analysis of a hypothetical tangling event in a turbine, providing valuable data such as the rotating velocity decrease of the turbine, the braking torque and the damage suffered by the blades. The methodology is somewhat general and can be applied to any problem in which damage caused by the interaction between a rotating and static piece is to be analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En los diseños y desarrollos de ingeniería, antes de comenzar la construcción e implementación de los objetivos de un proyecto, es necesario realizar una serie de análisis previos y simulaciones que corroboren las expectativas de la hipótesis inicial, con el fin de obtener una referencia empírica que satisfaga las condiciones de trabajo o funcionamiento de los objetivos de dicho proyecto. A menudo, los resultados que satisfacen las características deseadas se obtienen mediante la iteración de métodos de ensayo y error. Generalmente, éstos métodos utilizan el mismo procedimiento de análisis con la variación de una serie de parámetros que permiten adaptar una tecnología a la finalidad deseada. Hoy en día se dispone de computadoras potentes, así como algoritmos de resolución matemática que permiten resolver de forma veloz y eficiente diferentes tipos de problemas de cálculo. Resulta interesante el desarrollo de aplicaciones que permiten la resolución de éstos problemas de forma rápida y precisa en el análisis y síntesis de soluciones de ingeniería, especialmente cuando se tratan expresiones similares con variaciones de constantes, dado que se pueden desarrollar instrucciones de resolución con la capacidad de inserción de parámetros que definan el problema. Además, mediante la implementación de un código de acuerdo a la base teórica de una tecnología, se puede lograr un código válido para el estudio de cualquier problema relacionado con dicha tecnología. El desarrollo del presente proyecto pretende implementar la primera fase del simulador de dispositivos ópticos Slabsim, en cual se puede representar la distribución de la energía de una onda electromagnética en frecuencias ópticas guiada a través de una una guía dieléctrica plana, también conocida como slab. Este simulador esta constituido por una interfaz gráfica generada con el entorno de desarrollo de interfaces gráficas de usuario Matlab GUIDE, propiedad de Mathworks©, de forma que su manejo resulte sencillo e intuitivo para la ejecución de simulaciones con un bajo conocimiento de la base teórica de este tipo de estructuras por parte del usuario. De este modo se logra que el ingeniero requiera menor intervalo de tiempo para encontrar una solución que satisfaga los requisitos de un proyecto relacionado con las guías dieléctricas planas, e incluso utilizarlo para una amplia diversidad de objetivos basados en esta tecnología. Uno de los principales objetivos de este proyecto es la resolución de la base teórica de las guías slab a partir de métodos numéricos computacionales, cuyos procedimientos son extrapolables a otros problemas matemáticos y ofrecen al autor una contundente base conceptual de los mismos. Por este motivo, las resoluciones de las ecuaciones diferenciales y características que constituyen los problemas de este tipo de estructuras se realizan por estos medios de cálculo en el núcleo de la aplicación, dado que en algunos casos, no existe la alternativa de uso de expresiones analíticas útiles. ABSTRACT. The first step in engineering design and development is an analysis and simulation process which will successfully corroborate the initial hypothesis that was made and find solutions for a particular. In this way, it is possible to obtain empirical evidence which suitably substantiate the purposes of the project. Commonly, the characteristics to reach a particular target are found through iterative trial and error methods. These kinds of methods are based on the same theoretical analysis but with a variation of some parameters, with the objective to adapt the results for a particular aim. At present, powerful computers and mathematical algorithms are available to solve different kinds of calculation problems in a fast and efficient way. Computing application development is useful as it gives a high level of accurate results for engineering analysis and synthesis in short periods of time. This is more notable in cases where the mathematical expressions on a theoretical base are similar but with small variations of constant values. This is due to the ease of adaptation of the computer programming code into a parameter request system that defines a particular solution on each execution. Additionally, it is possible to code an application suitable to simulate any issue related to the studied technology. The aim of the present project consists of the construction of the first stage of an optoelectronics simulator named Slabsim. Slabism is capable of representing the energetic distribution of a light wave guided in the volume of a slab waveguide. The mentioned simulator is made through the graphic user interface development environment Matlab GUIDE, property of Mathworks©. It is designed for an easy and intuitive management by the user to execute simulations with a low knowledge of the technology theoretical bases. With this software it is possible to achieve several aims related to the slab waveguides by the user in low interval of time. One of the main purposes of this project is the mathematical solving of theoretical bases of slab structures through computing numerical analysis. This is due to the capability of adapting its criterion to other mathematical issues and provides a strong knowledge of its process. Based on these advantages, numerical solving methods are used in the core of the simulator to obtain differential and characteristic equations results that become represented on it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objetivo principal del presente proyecto es proporcionar al ingeniero de telecomunicaciones una visión general de las técnicas que se utilizan en el modelado del sistema auditivo. El modelado del sistema auditivo se realiza con los siguientes objetivos: a) Interpretar medidas directas, b)unificar el entendimiento de diferentes fenómenos, c) guiar estrategias de amplificación para suplir pérdidas auditivas y d) tener predicciones experimentalmente comprobables de comportamientos, con diferentes niveles de complejidad. En este trabajo se tratarán y explicarán brevemente las diferentes técnicas utilizadas para modelar las partes del sistema auditivo, desde las analogías electroacústicas, modelos biofísicos, binaurales, hasta la implementación de filtros auditivos mediante procesado de señal. Podemos concluir que el modelado mediante analogías electroacústicas permite una rápida implementación y entendimiento, pero tiene ciertas limitaciones. Las simulaciones mediante análisis numéricos son precisas y de gran utilidad tanto para del oído medio como para el interno. El procesado de señal es el procedimiento más completo y utilizado ya que permite modelar oído externo y medio además de permitir la implementación de filtros cocleares muy precisos y coherentes con la realidad incluyéndolos en modelos perceptivos. ABSTRACT. The main aim of the Project is to provide the Telecommunications Engineer an overview about the approaches for modelling the auditory system. The auditory system modelling is done for the next objectives: a) Interpret direct measures, b) Understand different phenomena c) get strategies of amplification for hearing impaired people and d) Obtain testable predictions experimentally about some behaviors with different complexity levels. Inside this document, several approaches about modeling of the auditory system parts will be explained: analog circuits, biophysics models, binaural models, and auditory filters made through signal processing. In conclusion, analog circuits are made quickly and they are easier to understand but they have many limitations. Simulations through numerical analysis are accurate and useful in middle and inner ear models. Signal processing is the more versatile approach because it lets to make a model of external and middle ear and then it allows to make complex auditory filters. Perceptive models can be made entirely through this method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Engineering of devices and systems such as magnets, fault current limiters or cables, based on High Temperature Superconducting wires requires a deep characterization of the possible degradation of their properties by handling at room temperature as well as during the service life thus establishing the limits for building up functional devices and systems. In the present work we report our study regarding the mechanical behavior of spliced joints between commercial HTS coated conductors based on YBCO at room temperature and service temperature, 77 K. Tensile tests under axial stress and the evolution of the critical current and the electric resistance of the joints have been measured. The complete strain contour for the tape and the joint has been obtained by using Digital Image Correlation. Also, tensile tests under external magnetic field have been performed and the effect of the applied field on the critical current and the electric resistance of the joints has been studied. Finally, a preliminary numerical study by means of Finite Element Method (FEM) of the mechanical behavior of the joints between commercial HTS is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is devoted to the numerical analysis of bidimensional bonded lap joints. For this purpose, the stress singularities occurring at the intersections of the adherend-adhesive interfaces with the free edges are first investigated and a method for computing both the order and the intensity factor of these singularities is described briefly. After that, a simplified model, in which the adhesive domain is reduced to a line, is derived by using an asymptotic expansion method. Then, assuming that the assembly debonding is produced by a macro-crack propagation in the adhesive, the associated energy release rate is computed. Finally, a homogenization technique is used in order to take into account a preliminary adhesive damage consisting of periodic micro-cracks. Some numerical results are presented.