900 resultados para Ingeniero de caminos, canales y puertos
em Universidad Politécnica de Madrid
Resumo:
Comentarios respecto al apartado 4.4 referente al cálculo mediante métodos armónicos del estudio de tableros de puentes curvos realizado por el Dr. Javier Manterola Armisén.
Resumo:
La motivación principal de este trabajo fin de máster es el estudio del comportamiento en rotura de un material metálico muy dúctil como es una aleación de aluminio. El conocimiento del comportamiento de los materiales en su régimen plástico es muy valioso, puesto que el concepto de ductilidad de un material está relacionado directamente con la seguridad de una estructura. Un material dúctil es aquel que resiste estados tensionales elevados y alcanza altos niveles de deformación, siendo capaz de absorber gran cantidad de energía antes de su rotura y permitiendo una redistribución de esfuerzos entre elementos estructurales. Por tanto, la utilización de materiales dúctiles en el mundo de la construcción supone en general un incremento de la seguridad estructural por su “capacidad de aviso”, es decir, la deformación que estos materiales experimentan antes de su rotura. Al contrario que los materiales frágiles, que carecen de esta capacidad de aviso antes de su rotura, produciéndose ésta de forma repentina y sin apenas deformación previa. En relación a esto, el ensayo de tracción simple se considera una de las técnicas más sencillas y utilizadas en la caracterización de materiales metálicos, puesto que a partir de la curva fuerza-desplazamiento que este ensayo proporciona, permite obtener de forma precisa la curva tensión-deformación desde el instante de carga máxima. No obstante, existen dificultades para la definición del comportamiento del material desde el instante de carga máxima hasta rotura, lo que provoca que habitualmente no se considere este último tramo de la curva tensión-deformación cuando, tal y como sabemos, contiene una información muy importante y valiosa. Y es que, este último tramo de la curva tensión-deformación es primordial a la hora de determinar la energía máxima que un elemento es capaz de absorber antes de su rotura, aspecto elemental, por ejemplo para conocer si una rotura ha sido accidental o intencionada. Por tanto, el tramo final de la curva tensión-deformación proporciona información muy interesante sobre el comportamiento del material frente a situaciones límite de carga. El objetivo por tanto va a ser continuar con el trabajo realizado por el doctor Ingeniero de Caminos, Canales y Puertos, Fernando Suárez Guerra, el cual estudió en su Tesis Doctoral el comportamiento en rotura de dos materiales metálicos como son, un Material 1: acero perlítico empleado en la fabricación de alambres de pretensado, y un Material 2: acero tipo B 500 SD empleado como armadura pasiva en hormigón armado. Estos materiales presentan un comportamiento a rotura claramente diferenciado, siendo más dúctil el Material 2 que el Material 1. Tomando como partida esta Tesis Doctoral, este Trabajo Fin de Máster pretende continuar con el estudio del comportamiento en rotura de un material metálico mucho más dúctil que los experimentados anteriormente, como es el aluminio. Analizando el último tramo de la curva tensión-deformación, que corresponde al tramo entre el instante de carga máxima y el de rotura del material. Atendiendo a los mecanismos de rotura de un material metálico, es necesario distinguir dos comportamientos distintos. Uno que corresponde a una rotura en forma de copa y cono, y otro que corresponde a una superficie de rotura plana perpendicular a la dirección de aplicación de la carga.
Resumo:
El objetivo general de la obra planteada en el presente proyecto es el de construir un nuevo estadio de fútbol para la R.S.D. Alcalá. Los objetivos particulares que encierra la obra es la de reformar una zona deportiva perteneciente al municipio de Alcalá de Henares, sin contaminar el río Henares dada su proximidad. Fuera de estos términos, uno de los objetivos de este proyecto es el de la aplicación de los conceptos asimilados por el proyectista a lo largo de la carrera de “Ingeniero de caminos, canales y puertos”. Además, otra tarea que recoge o pretende el presente documento es la de aprender a redactar y a conocer las componentes de un proyecto de obra civil
Resumo:
Los planes de estudios de ingeniería civil implican la integración de diversas disciplinas formales en un nivel alto de conocimientos. La Ingeniería del Terreno requiere sólidos conocimientos y habilidades en Geología aplicada, Geomorfología y Topografía. Estas disciplinas se han estudiado a fondo en los programas tradicionales de ingeniería civil, pero a menudo desconectadas entre ellas. El Departamento de Ingeniería y Morfología del Terreno, en la UPM, tiene a su cargo la enseñanza de estas disciplinas en las titulaciones de ingeniería civil, geológica y geodésica. El EEES proporciona un nuevo marco para una mejor integración de las disciplinas, a partir de la experiencia acumulada en más de 200 años de docencia. La Geomática es un campo emergente, como consecuencia de los avances en informática, comunicaciones y medición, así como en el campo de la de teledetección espacial. Se presenta la experiencia de integración de la geología, la geomorfología y la geomática en ingeniería civil, apoyadas en los avances de tecnologías de la información. Se promueve el trabajo en grupos con el fin de adquirir formación geológica a través de la geomática, así como un amplio entrenamiento en búsqueda y tratamiento de datos. Los primeros resultados se obtuvieron en el curso 2008-2009, siendo satisfactorios en cuando a la adquisición de conocimientos y el tiempo empleado en ello. Esta experiencia ha servido de base para la programación de las enseñanzas de Ingeniería del Terreno en los grados de ingeniero civil, geológico y geodésico adaptados al EEES en la UPM.
Resumo:
The “Basic Infrastructure for Development and Sustainability” Cooperation Group of the Universidad Polítecnica de Madrid has developed a project in the city of Beira, Mozambique, financed by the Spanish International Development Cooperation Agency, to mitigate the consequences associated with climate change, which together with the city’s location and the lack of suitable maintenance in the area, have left Beira more exposed to flooding and coastal erosion. In order to provide a solution to these problems, consideration has been given to the renovation of coastal defence infrastructure and the system of stormwater drainage channels.
Resumo:
La situación económica actual hace pensar que en los próximos años aumentarán considerablemente la cantidad de infraestructuras públicas gestionadas por empresas privadas mediante modelos de concesión. Los puertos ofrecen un campo idóneo para la implantación de estos modelos tanto por la tradición que ya existe en este sector como porque su viabilidad económica no depende de aportaciones presupuestarias de la Administración. Esta situación supondrá el desarrollo de un sector de actividad profesional para el que los Ingenieros de Caminos, Canales y Puertos estamos magníficamente posicionados. Sin embargo esta posición de ventaja no debe hacernos indolentes. En una situación de escasa demanda laboral, especialmente para técnicos cualificados, y con el despliegue de medidas desreguladoras del ejercicio profesional que se está produciendo es evidente que muchos otros colectivos tratarán de acceder a este nicho laboral. Actualmente existe una considerable oferta formativa para profesionales de la gestión portuaria que, en general, está abierta a un amplio abanico de perfiles académicos. El objeto de esta comunicación es analizar las posibilidades que este sector de actividad ofrece a los Ingenieros de Caminos, Canales y Puertos y las medidas oportunas para aprovecharlas al máximo.
Resumo:
Tradicionalmente los planes de estudios de ingeniería civil implican la integración de diversas disciplinas formales en un nivel alto de conocimientos. Particularmente, la Ingeniería del Terreno, la Ordenación Territorial y el Medio Ambiente requieren sólidos conocimientos y habilidades en Geología aplicada, Geomorfología y Topografía. Estas disciplinas se han estudiado a fondo en los programas tradicionales de ingeniería civil, pero a menudo desconectadas entre ellas. Por otro lado, la Geomática es un campo emergente, como consecuencia de los avances en informática, comunicaciones y medición, así como en el campo de la de teledetección espacial y cuya formación es casi nula en dichos planes. El resultado es que el egresado en cualquiera de las ramas de ingeniería civil carece de aptitudes y competencias ante la solución de problemas basados en herramientas con un uso profundo de dichas técnicas geomáticas. Desde el Departamento de Ingeniería y Morfología del Terreno, de la ETSICCP de la UPM, entendemos que debe continuarse con el esfuerzo en la integración de la geología, la geomorfología y la geomática en ingeniería civil, apoyadas en los avances de tecnologías de la información. El trabajo presenta la experiencia y metodología propuesta en los dos últimos cursos, cuyos resultados son muy satisfactorios.
Resumo:
La rotura de las geoestructuras puede ser causada por cambios en las tensiones efectivas debidos bien por cargas externas (terremotos, por ejemplo), bien por variación de las presiones intersticiales (lluvia), o cambios en la geometría (erosión), así como por una disminución de las propiedades resistentes de los materiales (meteorización, ataque químico, etc). El caso particular de los deslizamientos es interesante, existiendo diversas clasificaciones que tienen en cuenta su forma, velocidad de propagación, etc. Dos de estos casos son los deslizamientos propiamente dichos y los flujos. En el primer caso, la deformación se concentra en zonas de pequeño espesor, que se idealiza como una superficie (superficie de rotura). La cinemática de esta rotura se puede considerar como el movimiento relativo de dos masas cuyas deformaciones no son grandes. Este mecanismo está usualmente asociado a materiales sobreconsolidados que presentan reblandecimiento. Los flujos se producen generalmente en materiales de baja densidad y estructura metaestable, con tendencia a compactar, de forma que se generan presiones intersticiales que aumentan el ángulo de rozamiento movilizado, pudiéndose llegar en algunos casos a la licuefacción. Este mecanismo de rotura se conoce como rotura difusa, y no ha sido tan estudiado como el de localización a pesar de se trata frecuentemente de roturas de tipo catastrófico. De hecho, el suelo pasa de un estado sólido a un estado fluidificado, con una gran movilidad. Es importante para el ingeniero predecir tanto el comportamiento de las geoestructuras bajo las cargas de cálculo como las condiciones en las que se producirá la rotura. De esta manera, en algunos casos, se podrán reforzar las zonas más débiles aumentando así su seguridad. En otros casos, no se podrá realizar este refuerzo (grandes deslizamientos como avalanchas, lahares, etc), pero sí se podrán conocer las consecuencias de la rotura: velocidad de propagación, alcance, espesores, etc. La modelización de estos problemas es compleja, ya que aparecen dificultades en los modelos matemáticos, constitutivos o reológicos y numéricos. Dado que en los geomateriales aparece una interacción fuerte entre el esqueleto sólido y los fluidos intersticiales, esto debe ser tenido en cuenta en los modelos matemáticos. En este trabajo se describirán, pues, el desarrollo y aplicación de técnicas avanzadas de modelización; matemática, constitutiva/reológica y numérica. Se dedicará especial atención a los problemas de transición entre suelos y suelos fluidificados, que hoy en día se estudian en una gran mayoría de los casos con modelos diferentes. Así por ejemplo, se emplean modelos constitutivos para el comportamiento previo a la rotura, y reológicos para los materiales fluidificados. En lo que respecta a los modelos matemáticos, existen formulaciones nuevas en velocidades (o desplazamientos), tensiones, y presiones de aire y agua intersticial, de los que se pueden obtener modelos simplificados integrados en profundidad para deslizamientos rápidos. Respecto de los modelos constitutivos, es interesante la teoría de la Plasticidad Generalizada (modelo básico de Pastor-Zienkiewicz y extensiones a suelos no saturados). Se estudiará la extensión de estos modelos elastoplásticos a la viscoplasticidad (Perzyna y consistente), explorando la posibilidad de emplearlos tanto antes como después de la rotura. Finalmente, en lo que a modelos numéricos se refiere, se describirá la implementación de los modelos matemáticos y constitutivos desarrollados en (i) modelos clásicos de elementos finitos, como el GeHoMadrid desarrollado en los grupo investigador M2i al que pertenece el autor de este trabajo, (ii) Métodos de tipo Taylor Galerkin, y (iii) métodos sin malla como el SPH y el Material Point Model. Estos modelos se aplicarán, principalmente a (i) Licuefacción de estructuras cimentadas en el fondo marino (ii) presas de residuos mineros (iii) deslizamientos rápidos de laderas.
Resumo:
Esta Tesis Doctoral aborda el estudio de la resistencia a carga concentrada transversal del alma de vigas metálicas cuando se dispone un nervio inferior de rigidez, que puede materializarse mediante una célula triangular soldada al ala inferior de la viga y sobre el que se aplica directamente la carga. En primer lugar se presenta, de una forma cualitativa, las mejoras resistentes que aporta este diseño frente a la resistencia de una viga doble T (o alma equivalente de una sección cajón) con el ala inferior exenta. Se concluye que esta solución tiene gran interés de cara al diseño de puentes empujados, ya que, con una ejecución muy simple, puede mejorarse de forma sustancial la resistencia a carga concentrada transversal del alma sin recurrir a soluciones mucho más costosas como disponer rigidización longitudinal o, en última instancia, aumentar el espesor de alma por motivos resistentes en una fase constructiva. Se analizan en detalle todas las investigaciones realizadas, a lo largo de más de 80 años, sobre la resistencia de vigas metálicas a carga concentrada transversal, llevadas a cabo únicamente sobre vigas doble T con o sin rigidización longitudinal. Se centra el análisis en investigar los mecanismos resistentes identificados, con objeto de determinar si las distintas formulaciones planteadas contemplan mecanismos de resistencia aplicables al caso de vigas con nervio de rigidez. Se profundiza posteriormente en el análisis de la contribución de un nervio de rigidez a la resistencia a carga concentrada transversal. A través de modelos numéricos de elementos finitos no lineales, se simula la resistencia última de secciones reales de puentes metálicos de tipo doble T a las que se añade un nervio de rigidez y se constata el incremento notable en la resistencia que aporta el nervio. Se identifican los mecanismos resistentes involucrados, mediante un modelo híbrido de elementos finitos con el nervio modelizado con elementos viga, de forma que se obtienen resultados de esfuerzos y movimientos en el propio nervio, como viga en flexión, que resultan de gran claridad para la interpretación estructural del fenómeno. Con ello, se compara la resistencia calculada con la vigente formulación de EAE y EN1993 con la obtenida en vigas doble T y vigas con nervio de rigidez y se concluye que tal formulación es insuficiente para evaluar la resistencia de estas últimas, ya que no reproduce el mecanismo de resistencia conjunta del nervio y rigidizadores, adicional a la simple contribución del alma a la resistencia. A la vista de ello se plantea una formulación alternativa, que contempla de forma explícita los mecanismos resistentes complementarios identificados: flexión longitudinal del nervio, cuando los rigidizadores están más separados que la longitud de alma resistente, y contribución directa de los rigidizadores a la resistencia plástica cuando se aproximan a menor separación que la longitud de alma resistente. Las conclusiones derivadas de todo el análisis anterior se aplican al diseño de un caso real de puente empujado, en el que se suprime toda la rigidización longitudinal y, sobre unas almas exentas de espesor suficiente por resistencia a cortante, se dispone un nervio de rigidez. Los mecanismos resistentes identificados en la Tesis Doctoral, apoyados en la formulación planteada al efecto, permiten al ingeniero alternativas de diseño frente a las posibilidades que le otorga la vigente formulación de resistencia a carga concentrada en vigas doble T. Así, en efecto, una viga doble T que requiera una mayor resistencia a carga concentrada transversal sólo puede reforzarse incrementando el espesor del alma. Por el contrario, con el nervio de rigidez, el ingeniero puede actuar sobre otras variables de diseño: incrementar la rigidez del nervio manteniendo el espesor del alma, para potenciar el mecanismo de flexión longitudinal del nervio; o bien aproximar rigidizadores, más incluso que la longitud de alma resistente, en cuyo caso limitarán ésta a su separación pero contribuirán a incrementar el valor total de la resistencia, superando una insuficiencia de la vigente formulación ya detectada en diversas investigaciones recientes.
Resumo:
La presente obra es un compendio de conceptos, metodologías y técnicas útiles para acometer proyectos y obras en terrenos volcánicos desde el punto de vista de la ingeniería geológica y la geotecnia. El libro se presenta en tres partes diferenciadas. La primera es conceptual y metodológica, con capítulos que tratan sobre la clasificación de las rocas volcánicas con fines geotécnicos, la caracterización geomecánica, los problemas geotécnicos y constructivos asociados a los distintos materiales, y una guía metodológica para la redacción de informes geotécnicos para la edificación. La segunda parte aborda las aplicaciones a obras de ingeniería, incluyendo deslizamientos, obras subterráneas,infraestructuras marítimas y obras públicas. La tercera parte recoge capítulos dedicados a describir distintos casos prácticos de obras y proyectos en los que la problemática geotécnica en terrenos volcánicos ha tenido un papel relevante. Los capítulos han sido elaborados por técnicos y científicos de reconocido prestigio en el campo de la ingeniería geológica en terrenos volcánicos, que han plasmado en ellos sus conocimientos y experiencias en la materia.Los editores y autores de parte de los capítulos del libro, los Doctores Luis E. Hernández Gutiérrez (Geólogo) y Juan Carlos Santamarta Cerezal (Ingeniero de Montes, Civil y Minas), son los responsables del grupo de investigación INGENIA (Ingeniería Geológica, Innovación y Aguas). Su actividad investigadora comprende más de 200 publicaciones en el área de la ingeniería geológica, la geotecnia, medio ambiente y el aprovechamiento del agua en islas y terrenos volcánicos. En relación a la docencia han impartido y dirigido más de 90 seminarios y cursos de especialización a nivel nacional e internacional, incluyendo la organización de 4 congresos internacionales. Fueron premiados por la Universidad de La Laguna en los años 2012, 2013 y 2014 por su calidad docente e innovación universitaria, y son pioneros en los laboratorios virtuales para la enseñanza de la ingeniería. Participan activamente como profesores colaboradores e investigadores en varias universidades e instituciones españolas e internacionales. Todas sus publicaciones están disponibles en internet, con libre acceso. Ingeniería geológica en terrenos volcánicos, es una obra de gran interés para, consultores, técnicos de administraciones públicas, proyectistas y demás profesionales implicados en obras y proyectos de infraestructuras en terrenos volcánicos; también es útil para académicos y estudiantes de ingeniería o ciencias geológicas que quieran investigar o iniciarse en las singularidades que presentan los materiales volcánicos en la edificación o en la ingeniería civil y minera.
Resumo:
El desarrollo económico y social, a veces excesivamente rápido, que se ha producido en las últimas décadas ha generado una serie de problemas medioambientales generalmente más acuciantes en el entorno de las grandes ciudades. Dentro de este contexto y debido a este desarrollo exponencial de las actividades humanas, la contaminación acústica se ha convertido en uno de los problemas de peor solución, tanto a nivel de reducción como de atenuación, por lo que el diseño de pantallas acústicas está siendo uno de los objetivos prioritarios en la lucha contra la contaminación sonora. La expresión más extendida para designar a las barreras acústicas es la de pantallas acústicas, entendiéndose por éstas, muros de espesor relativamente pequeño concebidos como barreras acústicas. Hasta la fecha los avances en el diseño de estas pantallas han sido notables y ya se cuentan por cientos los kilómetros de las mismas que han sido construidas e instaladas, sobre todo en la periferia de las grandes ciudades cerca de las llamadas vías de tráfico rápido. Estos avances se han centrado sobre todo en el diseño de materiales de gran poder de absorción de las ondas, como método principal de atenuación, o bien en la forma geométrica de la superficie expuesta al tráfico, formas que por medio de reflexiones son capaces de anular o mitigar parte de la energía transportada por las ondas sonoras. A la vista de estos resultados las actuales pantallas acústicas reducen el nivel sonoro por atenuación, pero no son capaces de anular la onda incidente. Por otro lado, los últimos estudios de la tecnología japonesa en estos temas es el análisis del problema de borde, ya que este fenómeno de difracción es uno de los causantes principales del nivel sonoro en el trasdós de la pantalla. Pese a que es imposible anular este efecto de borde los estudios se han encauzado a intentar obtener una forma de la sección de la pantalla en su parte superior que sea capaz de mitigar este efecto, bien por interferencia entre las ondas incidentes o bien por superposición de diversos fenómenos de difracciones. En este orden de cosas entra a escena el concepto de pantalla tubular, como una nueva pantalla perforada que anula ondas sonoras basándose en el efecto físico de los tubos de Kundt. Su funcionamiento es debido a la propiedad de las ondas sonoras de producir resonancias al transmitirse dentro de cavidades de diferentes secciones tipo. Este tipo de pantallas se olvida del concepto clásico de pantalla acústica y su forma de atenuar el sonido y pasa al cálculo de la atenuación por eliminación de frecuencias. Esta tesis ofrece una nueva visión de este tipo de pantallas tubulares, optimizando su funcionamiento en función de la longitud de las cavidades tubulares, que han de ser diseñadas no de forma rectilínea, sino según directrices de curvas conocidas. El método operativo consistirá en aplicar las propiedades morfológicas de estas curvas a la propagación de ondas dentro de cavidades curvilíneas, obteniendo una serie de funciones de onda transmitidas y otras anuladas, lo que permite evaluar el porcentaje de energía que es capaz de anular cada tipo de curva para un espesor prefijado de pantalla. Este planteamiento nos permite elaborar un método de diseño y optimización por consideraciones exclusivamente geométricas, en función de un número muy reducido de parámetros, entre los que destaca la frecuencia que se presenta con mayor asiduidad, que es la principal causante del nivel sonoro. Asimismo, el método está apoyado en gran manera en un soporte gráfico, lo que le hace de sencilla aplicación incluso entre técnicos no excesivamente acostumbrados a trabajar con ondas sonoras. Como resumen final, las aportaciones más relevantes que incorpora esta tesis son las siguientes: Desarrollo práctico de la teoría global de pantallas acústicas tubulares ; Aplicación de la geometría clásica, en el concepto de longitudes de curvas tipo, a las técnicas de ingeniería del medio ambiente lo que representa un avance cualitativo notable ya que hasta la fecha no se había planteado la interacción de dos disciplinas en apariencia tan dispares y de conceptos tan heterogéneos ; Desarrollo de un método secuencial que es capaz de engarzar el análisis acústico de un cierto flujo de tráfico vehicular con el análisis geométrico de curvas tipo y dotar así al futuro diseñador de pantallas acústicas de una poderosa herramienta que le permita variar la tipología y forma de la pantalla en función de parámetros que pueden variar de manera aleatoria.
Resumo:
El Real Decreto 1627/97 sobre disposiciones mínimas en materia de seguridad y salud en las obras de construcción, dictado en aplicación de la Directiva europea 92/57/CEE, establece la obligación de contar, tanto en la fase de redacción de proyecto como en la de ejecución de obra, con un coordinador en materia de seguridad y salud, esto es, un “técnico competente”1 que, desde el lado de la propiedad, desempeñe funciones de control sobre la actuación preventiva de los proyectistas y empresas constructoras participantes en ambos procesos. Dicha labor de control, tal y como veremos más adelante, no se limita a una mera tarea de supervisión de la práctica preventiva de empresas y proyectistas, sino que, yendo más allá, exige la participación activa del coordinador en la validación expresa de los procedimientos organizativos de carácter preventivo que vayan adoptando dichos agentes a lo largo de sus respectivas actuaciones. Si bien la presencia real del coordinador en fase de proyecto ha quedado, de manera poco justificada, relegada a aquellos casos singulares que demandan la participación de diversos especialistas, su homólogo en fase de ejecución es, actualmente, una figura habitual en la práctica totalidad de las obras de construcción sobre cuya capacitación y cometidos persisten, aún hoy, interpretaciones muy diversas que conviene analizar de manera detallada.
Resumo:
Se presentan resultados obtenidos mediante la aplicación del MétododePartículasyElementosFinitos (PFEM) en la simulación dedeslizamientosdeladeraenembalses. Es un fenómeno complejo, por la interacción entre el material deslizado, la masa de agua del embalse, yel conjunto formado por el vaso y la presa. PFEM es un esquema numérico original con el que se ha afrontado con éxito la resolución de problemas de interacción fluido-estructura. Combina un enfoque Lagrangiano con la resolución de las ecuaciones deelementosfinitosmediante la generación de una malla, que se actualiza en cada paso de tiempo. Se presentan resultados de casos de validación en los que se han reproducido ensayos en laboratorio existentes en la bibliografía técnica. Se muestran también otros cálculos más complejos, sobre la cartografía a escala real de un embalse, donde se aprecia el fenómeno de generación de la ola, su propagación por el embalse y la afección a la presa. Por último, se ha modelado el deslizamiento ocurrido en 1958 en la bahía de Lituya (Alaska), enel que la caída de 90 millones de toneladas de roca produjo una ola que alcanzó una sobreelevación máxima de 524 m en la ladera opuesta. Los resultados permiten afirmar que PFEM puede ser una herramienta útil enel análisis de riesgos frente a este tipo de fenómenos, ofreciendo una buena aproximación de las afecciones potenciales
Resumo:
El presente trabajo se refiere al estudio teórico-experimental del comportamiento de pilares y vigas de hormigón armado reforzados con fibra de carbono o CFRP. El análisis se realiza considerando que los pilares se refuerzan mediante la técnica de adhesión de tejidos de fibra de carbono, generando un efecto de confinamiento. Las vigas se refuerzan mediante la incorporación de barras del mismo material, con refuerzos a cortante. El objetivo es poder comparar el estudio analítico de este tipo de refuerzos con resultados experimentales obtenidos con anterioridad a la realización de este documento, y así poder obtener conclusiones de las posibles diferencias. Hay que señalar que los modelos experimentales no forman parte de este estudio. Los ensayos en pilares fueron realizados en sección cuadrada y circular evaluando la rotura a compresión de las piezas, habiendo sido éstas escaladas con un factor de reducción de 2,3. Los ensayos correspondientes a vigas se realizaron en sección rectangular, centrándose en la evaluación de la rotura a flexión y habiendo sido escaladas igualmente, pero con un factor de reducción de 1:2. El documento se estructura en cuatro capítulos, cuyo contenido se expone de forma concisa a continuación. En el capítulo uno o marco teórico se exponen los principios de comportamiento y tipologías de los pilares y vigas de hormigón armado, las bases teóricas de su refuerzo y confinamiento, así como las diversas técnicas de refuerzo existentes. Se detalla la técnica con FRP, comparando y analizando sus ventajas e inconvenientes. En el capítulo dos se expone el proceso de fabricación, refuerzo y resultados de los modelos experimentales realizados para ambos elementos estructurales. La obtención de los modelos teóricos forma parte del capítulo tres, comparándose con los resultados experimentales en el cuarto capítulo. Finalmente, en el último capítulo se presentan las conclusiones obtenidas al realizar esta comparativa en el refuerzo de vigas y pilares con fibra de carbono. This work refers to the theoretical and experimental study of the behavior of CFRP reinforced concrete columns and beams. The analysis was done considering that the pillars are reinforced by CFRP wrapping technique, resulting in a confinement effect. The beams are reinforced by the addition of bars of the same material, with shear reinforcements. The objective is to compare the analytical study of this type of reinforcement with experimental results obtained prior to the performance of this document, and draw conclusions for any differences. Notice that experimental models are not part of this study. The tests were performed on circular and square section pillars, evaluating compression fracture of the pieces, having been scaled down with a factor of 2.3. The tests were performed on rectangular section beams, focusing on evaluation of the bending fracture and being scaled down equally, but with a factor of 1:2. The document is divided into four chapters, whose content is set out concisely below. The chapter one or theoretical framework sets out the principles of behavior and types of columns and beams of reinforced concrete, the theoretical basis of its reinforcement and confinement, as well as various existing reinforcement techniques. CFRP technique it’s detailed, comparing and analyzing their advantages and disadvantages. Chapter two describes the process of manufacture, reinforcement and results of experimental models made for both structural elements. Chapter three shows the obtaining of the theoretical models, comparing them with the experimental results in the fourth chapter. Finally, the last chapter presents the conclusions to make this comparison in the strengthening of beams and columns with carbon fiber.