2 resultados para Infrared wavelengths

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A crop management and precision agriculture software application facilitates the flow of information between disparate software/equipment and the network of individuals that work with them. A new generation of farmers are using precision technology to help them more efficiently manage their roplands. By measuring precisely the way their fields reflect and emit energy at visible and infrared wavelengths, precision farmers can monitor a wide range of variables that affect their crops,such as soil moisture, surface temperature, photosynthetic activity, and weed or pest infestations. Over thirty years have passed since Nelson and Winter put the concept of routines firmly at the center of the analysis of organizational and economic change. Taken as the central unit of analysis, routines would help understand energy and agriculture economy evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of high efficiency laser diodes (LD) and light emitting diodes (LED) covering the 1.0 to 1.55 μm region of the spectra using GaAs heteroepitaxy has been long pursued. Due to the lack of materials that can be grown lattice-macthed to GaAs with bandgaps in the 1.0 to 1.55 μm region, quantum wells (QW) or quantum dots (QD) need be used. The most successful approach with QWs has been to use InGaAs, but one needs to add another element, such as N, to be able to reach 1.3/1.5μm. Even though LDs have been successfully demonstrated with the QW approach, using N leads to problems with compositional homogeneity across the wafer, and limited efficiency due to strong non-radiative recombination. The alternative approach of using InAs QDs is an attractive option, but once again, to reach the longest wavelengths one needs very large QDs and control over the size distribution and band alignment. In this work we demonstrate InAs/GaAsSb QDLEDs with high efficiencies, emitting from 1.1 to 1.52 μm, and we analyze the band alignment and carrier loss mechanisms that result from the presence of Sb in the capping layer.