11 resultados para Information visualization
em Universidad Politécnica de Madrid
Resumo:
En los últimos años el número de dispositivos móviles y smartphones ha aumentado drásticamente, así como el número de aplicaciones destinadas a estos. Los desarrolladores siempre se han visto frenados en la creación de estas aplicaciones debido a la complejidad que supone la diversidad de sistemas operativos (Android, iOS, Windows Phone, etc), que utilizan lenguajes de programación diferentes, haciendo que, para poder desarrollar una aplicación que funcione en estas plataformas, en verdad haya que implementar una aplicación independiente para cada una de las plataformas. Para solucionar este problema han surgido frameworks, como Appcelerator Titanium, que permiten escribir una sola vez la aplicación y compilarla para las diferentes plataformas móviles objetivo. Sin embargo, estos frameworks están aún en estado muy temprano de desarrollo, por lo que no resuelven toda la problemática ni dan una respuesta completa a los desarrolladores. El objetivo de este Trabajo de Fin de Grado ha sido contribuir a la evolución de estos frameworks mediante la creación de un módulo para Appcelerator Titanium que permita construir de manera ágil aplicaciones multiplataforma que hagan uso de visualizadores de información geográfica. Para ello se propone el desarrollo de un módulo de mapa con soporte para capas WMS, rutas y polígonos en WKT, KML y GeoJSON. Se facilitará además que estas aplicaciones puedan acceder a capacidades del hardware como la brújula y el GPS para realizar un seguimiento de la localización, a la vez que se hace uso de la aceleración por el hardware subyacente para mejorar la velocidad y fluidez de la información visualizada en el mapa. A partir de este módulo se ha creado una aplicación que hace uso de todas sus características y posteriormente se ha migrado a la plataforma Wirecloud4Tablet como componente nativo que puede integrarse con otros componentes web (widgets) mediante técnicas de mashup. Gracias a esto se ha podido fusionar por un lado todas las ventajas que ofrece Wirecloud para el rápido desarrollo de aplicaciones sin necesidad de tener conocimientos de programación, junto con las ventajas que ofrecen las aplicaciones nativas en cuanto a rendimiento y características extras. Usando los resultados de este proyecto, se pueden crear de manera ágil aplicaciones composicionales nativas multiplataforma que hagan uso de visualización de información geográfica; es decir, se pueden crear aplicaciones en pocos minutos y sin conocimientos de programación que pueden ejecutar diferentes componentes (como el mapa) de manera nativa en múltiples plataformas. Se facilita también la integración de componentes nativos (como es el mapa desarrollado) con otros componentes web (widgets) en un mashup que puede visualizarse en dispositivos móviles mediante la plataforma Wirecloud. ---ABSTRACT---In recent years the number of mobile devices and smartphones has increased dramatically as well as the number of applications targeted at them. Developers always have been slowed in the creation of these applications due to the complexity caused by the diversity of operating systems (Android, iOS, Windows Phone, etc), each of them using different programming languages, so that, in order to develop an application that works on these platforms, the developer really has to implement a different application for each platform. To solve this problem frameworks such as Appcelerator Titanium have emerged, allowing developers to write the application once and to compile it for different target mobile platforms. However, these frameworks are still in very early stage of development, so they do not solve all the difficulties nor give a complete solution to the developers. The objective of this final year dissertation is to contribute to the evolution of these frameworks by creating a module for Appcelerator Titanium that permits to nimbly build multi-platform applications that make use of geographical information visualization. To this end, the development of a map module with support for WMS layers, paths, and polygons in WKT, KML, and GeoJSON is proposed. This module will also facilitate these applications to access hardware capabilities such as GPS and compass to track the location, while it makes use of the underlying hardware acceleration to improve the speed and fluidity of the information displayed on the map. Based on this module, it has been created an application that makes use of all its features and subsequently it has been migrated to the platform Wirecloud4Tablet as a native component that can be integrated with other web components (widgets) using mashup techniques. As a result, it has been fused on one side all the advantages Wirecloud provides for fast application development without the need of programming skills, along with the advantages of native apps, such as performance and extra features. Using the results of this project, compositional platform native applications that make use of geographical information visualization can be created in an agile way; ie, in a few minutes and without having programming skills, a developer could create applications that can run different components (like the map) natively on multiple platforms. It also facilitates the integration of native components (like the map) with other web components (widgets) in a mashup that can be displayed on mobile devices through the Wirecloud platform.
Resumo:
Urban economic activities are an essential facet in defining city identity. Traditional approaches rely very often on the most theoretical and quantitative features of the studies, excluding de-facto a direct association between those findings and the tangible subject of the analysis. To fill the gap, the Big Data era and information visualization methodologies could help analysts, stakeholders and general audience to gain a new insight on the field. In this paper, we want to provide some food for thought about new opportunities arising in visual urban economies as well as present some visual results on possible scenarios.
Resumo:
Cultural content on the Web is available in various domains (cultural objects, datasets, geospatial data, moving images, scholarly texts and visual resources), concerns various topics, is written in different languages, targeted to both laymen and experts, and provided by different communities (libraries, archives museums and information industry) and individuals (Figure 1). The integration of information technologies and cultural heritage content on the Web is expected to have an impact on everyday life from the point of view of institutions, communities and individuals. In particular, collaborative environment scan recreate 3D navigable worlds that can offer new insights into our cultural heritage (Chan 2007). However, the main barrier is to find and relate cultural heritage information by end-users of cultural contents, as well as by organisations and communities managing and producing them. In this paper, we explore several visualisation techniques for supporting cultural interfaces, where the role of metadata is essential for supporting the search and communication among end-users (Figure 2). A conceptual framework was developed to integrate the data, purpose, technology, impact, and form components of a collaborative environment, Our preliminary results show that collaborative environments can help with cultural heritage information sharing and communication tasks because of the way in which they provide a visual context to end-users. They can be regarded as distributed virtual reality systems that offer graphically realised, potentially infinite, digital information landscapes. Moreover, collaborative environments also provide a new way of interaction between an end-user and a cultural heritage data set. Finally, the visualisation of metadata of a dataset plays an important role in helping end-users in their search for heritage contents on the Web.
Resumo:
The control part of the execution of a constraint logic program can be conceptually shown as a search-tree, where nodes correspond to calis, and whose branches represent conjunctions and disjunctions. This tree represents the search space traversed by the program, and has also a direct relationship with the amount of work performed by the program. The nodes of the tree can be used to display information regarding the state and origin of instantiation of the variables involved in each cali. This depiction can also be used for the enumeration process. These are the features implemented in APT, a tool which runs constraint logic programs while depicting a (modified) search-tree, keeping at the same time information about the state of the variables at every moment in the execution. This information can be used to replay the execution at will, both forwards and backwards in time. These views can be abstracted when the size of the execution requires it. The search-tree view is used as a framework onto which constraint-level visualizations (such as those presented in the following chapter) can be attached.
Resumo:
Visualization of program executions has been used in applications which include education and debugging. However, traditional visualization techniques often fall short of expectations or are altogether inadequate for new programming paradigms, such as Constraint Logic Programming (CLP), whose declarative and operational semantics differ in some crucial ways from those of other paradigms. In particular, traditional ideas regarding the behavior of data often cannot be lifted in a straightforward way to (C)LP from other families of programming languages. In this chapter we discuss techniques for visualizing data evolution in CLP. We briefly review some previously proposed visualization paradigms, and also propose a number of (to our knowledge) novel ones. The graphical representations have been chosen based on the perceived needs of a programmer trying to analyze the behavior and characteristics of an execution. In particular, we concéntrate on the representation of the run-time valúes of the variables, and the constraints among them. Given our interest in visualizing large executions, we also pay attention to abstraction techniques, i.e., techniques which are intended to help in reducing the complexity of the visual information.
Resumo:
Visualization of program executions has been found useful in applications which include education and debugging. However, traditional visualization techniques often fall short of expectations or are altogether inadequate for new programming paradigms, such as Constraint Logic Programming (CLP), whose declarative and operational semantics differ in some crucial ways from those of other paradigms. In particular, traditional ideas regarding flow control and the behavior of data often cannot be lifted in a straightforward way to (C)LP from other families of programming languages. In this paper we discuss techniques for visualizing program execution and data evolution in CLP. We briefly review some previously proposed visualization paradigms, and also propose a number of (to our knowledge) novel ones. The graphical representations have been chosen based on the perceived needs of a programmer trying to analyze the behavior and characteristics of an execution. In particular, we concéntrate on the representation of the program execution behavior (control), the runtime valúes of the variables, and the runtime constraints. Given our interest in visualizing large executions, we also pay attention to abstraction techniques, Le., techniques which are intended to help in reducing the complexity of the visual information.
Resumo:
Virtual reality (VR) techniques to understand and obtain conclusions of data in an easy way are being used by the scientific community. However, these techniques are not used frequently for analyzing large amounts of data in life sciences, particularly in genomics, due to the high complexity of data (curse of dimensionality). Nevertheless, new approaches that allow to bring out the real important data characteristics, arise the possibility of constructing VR spaces to visually understand the intrinsic nature of data. It is well known the benefits of representing high dimensional data in tridimensional spaces by means of dimensionality reduction and transformation techniques, complemented with a strong component of interaction methods. Thus, a novel framework, designed for helping to visualize and interact with data about diseases, is presented. In this paper, the framework is applied to the Van't Veer breast cancer dataset is used, while oncologists from La Paz Hospital (Madrid) are interacting with the obtained results. That is to say a first attempt to generate a visually tangible model of breast cancer disease in order to support the experience of oncologists is presented.
Resumo:
Acquired brain injury (ABI) 1-2 refers to any brain damage occurring after birth. It usually causes certain damage to portions of the brain. ABI may result in a significant impairment of an individuals physical, cognitive and/or psychosocial functioning. The main causes are traumatic brain injury (TBI), cerebrovascular accident (CVA) and brain tumors. The main consequence of ABI is a dramatic change in the individuals daily life. This change involves a disruption of the family, a loss of future income capacity and an increase of lifetime cost. One of the main challenges in neurorehabilitation is to obtain a dysfunctional profile of each patient in order to personalize the treatment. This paper proposes a system to generate a patient s dysfunctional profile by integrating theoretical, structural and neuropsychological information on a 3D brain imaging-based model. The main goal of this dysfunctional profile is to help therapists design the most suitable treatment for each patient. At the same time, the results obtained are a source of clinical evidence to improve the accuracy and quality of our rehabilitation system. Figure 1 shows the diagram of the system. This system is composed of four main modules: image-based extraction of parameters, theoretical modeling, classification and co-registration and visualization module.
Resumo:
In this paper we provide a method that allows the visualization of similarity relationships present between items of collaborative filtering recommender systems, as well as the relative importance of each of these. The objective is to offer visual representations of the recommender system?s set of items and of their relationships; these graphs show us where the most representative information can be found and which items are rated in a more similar way by the recommender system?s community of users. The visual representations achieved take the shape of phylogenetic trees, displaying the numerical similarity and the reliability between each pair of items considered to be similar. As a case study we provide the results obtained using the public database Movielens 1M, which contains 3900 movies.
Resumo:
Geographic information technologies (GIT) are essential to many fields of research, such as the preservation and dissemination of cultural heritage buildings, a category which includes traditional underground wine cellars. This article presents a methodology based on research carried out on this type of rural heritage building. The data were acquired using the following sensors: EDM, total station, close-range photogrammetry and laser scanning, and subsequently processed with a specific software which was verified for each case, in order to obtain a satisfactory graphic representation of these underground wine cellars. Two key aspects of this work are the accuracy of the data processing and the visualization of these traditional constructions. The methodology includes an application for geovisualizing these traditional constructions on mobile devices in order to contribute to raising awareness of this unique heritage.
Resumo:
Over the last few years, the Data Center market has increased exponentially and this tendency continues today. As a direct consequence of this trend, the industry is pushing the development and implementation of different new technologies that would improve the energy consumption efficiency of data centers. An adaptive dashboard would allow the user to monitor the most important parameters of a data center in real time. For that reason, monitoring companies work with IoT big data filtering tools and cloud computing systems to handle the amounts of data obtained from the sensors placed in a data center.Analyzing the market trends in this field we can affirm that the study of predictive algorithms has become an essential area for competitive IT companies. Complex algorithms are used to forecast risk situations based on historical data and warn the user in case of danger. Considering that several different users will interact with this dashboard from IT experts or maintenance staff to accounting managers, it is vital to personalize it automatically. Following that line of though, the dashboard should only show relevant metrics to the user in different formats like overlapped maps or representative graphs among others. These maps will show all the information needed in a visual and easy-to-evaluate way. To sum up, this dashboard will allow the user to visualize and control a wide range of variables. Monitoring essential factors such as average temperature, gradients or hotspots as well as energy and power consumption and savings by rack or building would allow the client to understand how his equipment is behaving, helping him to optimize the energy consumption and efficiency of the racks. It also would help him to prevent possible damages in the equipment with predictive high-tech algorithms.