8 resultados para Inference process
em Universidad Politécnica de Madrid
Resumo:
This doctoral thesis focuses on the modeling of multimedia systems to create personalized recommendation services based on the analysis of users’ audiovisual consumption. Research is focused on the characterization of both users’ audiovisual consumption and content, specifically images and video. This double characterization converges into a hybrid recommendation algorithm, adapted to different application scenarios covering different specificities and constraints. Hybrid recommendation systems use both content and user information as input data, applying the knowledge from the analysis of these data as the initial step to feed the algorithms in order to generate personalized recommendations. Regarding the user information, this doctoral thesis focuses on the analysis of audiovisual consumption to infer implicitly acquired preferences. The inference process is based on a new probabilistic model proposed in the text. This model takes into account qualitative and quantitative consumption factors on the one hand, and external factors such as zapping factor or company factor on the other. As for content information, this research focuses on the modeling of descriptors and aesthetic characteristics, which influence the user and are thus useful for the recommendation system. Similarly, the automatic extraction of these descriptors from the audiovisual piece without excessive computational cost has been considered a priority, in order to ensure applicability to different real scenarios. Finally, a new content-based recommendation algorithm has been created from the previously acquired information, i.e. user preferences and content descriptors. This algorithm has been hybridized with a collaborative filtering algorithm obtained from the current state of the art, so as to compare the efficiency of this hybrid recommender with the individual techniques of recommendation (different hybridization techniques of the state of the art have been studied for suitability). The content-based recommendation focuses on the influence of the aesthetic characteristics on the users. The heterogeneity of the possible users of these kinds of systems calls for the use of different criteria and attributes to create effective recommendations. Therefore, the proposed algorithm is adaptable to different perceptions producing a dynamic representation of preferences to obtain personalized recommendations for each user of the system. The hypotheses of this doctoral thesis have been validated by conducting a set of tests with real users, or by querying a database containing user preferences - available to the scientific community. This thesis is structured based on the different research and validation methodologies of the techniques involved. In the three central chapters the state of the art is studied and the developed algorithms and models are validated via self-designed tests. It should be noted that some of these tests are incremental and confirm the validation of previously discussed techniques. Resumen Esta tesis doctoral se centra en el modelado de sistemas multimedia para la creación de servicios personalizados de recomendación a partir del análisis de la actividad de consumo audiovisual de los usuarios. La investigación se focaliza en la caracterización tanto del consumo audiovisual del usuario como de la naturaleza de los contenidos, concretamente imágenes y vídeos. Esta doble caracterización de usuarios y contenidos confluye en un algoritmo de recomendación híbrido que se adapta a distintos escenarios de aplicación, cada uno de ellos con distintas peculiaridades y restricciones. Todo sistema de recomendación híbrido toma como datos de partida tanto información del usuario como del contenido, y utiliza este conocimiento como entrada para algoritmos que permiten generar recomendaciones personalizadas. Por la parte de la información del usuario, la tesis se centra en el análisis del consumo audiovisual para inferir preferencias que, por lo tanto, se adquieren de manera implícita. Para ello, se ha propuesto un nuevo modelo probabilístico que tiene en cuenta factores de consumo tanto cuantitativos como cualitativos, así como otros factores de contorno, como el factor de zapping o el factor de compañía, que condicionan la incertidumbre de la inferencia. En cuanto a la información del contenido, la investigación se ha centrado en la definición de descriptores de carácter estético y morfológico que resultan influyentes en el usuario y que, por lo tanto, son útiles para la recomendación. Del mismo modo, se ha considerado una prioridad que estos descriptores se puedan extraer automáticamente de un contenido sin exigir grandes requisitos computacionales y, de tal forma que se garantice la posibilidad de aplicación a escenarios reales de diverso tipo. Por último, explotando la información de preferencias del usuario y de descripción de los contenidos ya obtenida, se ha creado un nuevo algoritmo de recomendación basado en contenido. Este algoritmo se cruza con un algoritmo de filtrado colaborativo de referencia en el estado del arte, de tal manera que se compara la eficiencia de este recomendador híbrido (donde se ha investigado la idoneidad de las diferentes técnicas de hibridación del estado del arte) con cada una de las técnicas individuales de recomendación. El algoritmo de recomendación basado en contenido que se ha creado se centra en las posibilidades de la influencia de factores estéticos en los usuarios, teniendo en cuenta que la heterogeneidad del conjunto de usuarios provoca que los criterios y atributos que condicionan las preferencias de cada individuo sean diferentes. Por lo tanto, el algoritmo se adapta a las diferentes percepciones y articula una metodología dinámica de representación de las preferencias que permite obtener recomendaciones personalizadas, únicas para cada usuario del sistema. Todas las hipótesis de la tesis han sido debidamente validadas mediante la realización de pruebas con usuarios reales o con bases de datos de preferencias de usuarios que están a disposición de la comunidad científica. La diferente metodología de investigación y validación de cada una de las técnicas abordadas condiciona la estructura de la tesis, de tal manera que los tres capítulos centrales se estructuran sobre su propio estudio del estado del arte y los algoritmos y modelos desarrollados se validan mediante pruebas autónomas, sin impedir que, en algún caso, las pruebas sean incrementales y ratifiquen la validación de técnicas expuestas anteriormente.
Resumo:
La seguridad en redes informáticas es un área que ha sido ampliamente estudiada y objeto de una extensa investigación en los últimos años. Debido al continuo incremento en la complejidad y sofisticación de los ataques informáticos, el aumento de su velocidad de difusión, y la lentitud de reacción frente a las intrusiones existente en la actualidad, se hace patente la necesidad de mecanismos de detección y respuesta a intrusiones, que detecten y además sean capaces de bloquear el ataque, y mitiguen su impacto en la medida de lo posible. Los Sistemas de Detección de Intrusiones o IDSs son tecnologías bastante maduras cuyo objetivo es detectar cualquier comportamiento malicioso que ocurra en las redes. Estos sistemas han evolucionado rápidamente en los últimos años convirtiéndose en herramientas muy maduras basadas en diferentes paradigmas, que mejoran su capacidad de detección y le otorgan un alto nivel de fiabilidad. Por otra parte, un Sistema de Respuesta a Intrusiones (IRS) es un componente de seguridad que puede estar presente en la arquitectura de una red informática, capaz de reaccionar frente a los incidentes detectados por un Sistema de Detección de Intrusiones (IDS). Por desgracia, esta tecnología no ha evolucionado al mismo ritmo que los IDSs, y la reacción contra los ataques detectados es lenta y básica, y los sistemas presentan problemas para ejecutar respuestas de forma automática. Esta tesis doctoral trata de hacer frente al problema existente en la reacción automática frente a intrusiones, mediante el uso de ontologías, lenguajes formales de especificación de comportamiento y razonadores semánticos como base de la arquitectura del sistema de un sistema de respuesta automática frente a intrusiones o AIRS. El objetivo de la aproximación es aprovechar las ventajas de las ontologías en entornos heterogéneos, además de su capacidad para especificar comportamiento sobre los objetos que representan los elementos del dominio modelado. Esta capacidad para especificar comportamiento será de gran utilidad para que el AIRS infiera la respuesta óptima frente a una intrusión en el menor tiempo posible. Abstract Security in networks is an area that has been widely studied and has been the focus of extensive research over the past few years. The number of security events is increasing, and they are each time more sophisticated, and quickly spread, and slow reaction against intrusions, there is a need for intrusion detection and response systems to dynamically adapt so as to better detect and respond to attacks in order to mitigate them or reduce their impact. Intrusion Detection Systems (IDSs) are mature technologies whose aim is detecting malicious behavior in the networks. These systems have quickly evolved and there are now very mature tools based on different paradigms (statistic anomaly-based, signature-based and hybrids) with a high level of reliability. On the other hand, Intrusion Response System (IRS) is a security technology able to react against the intrusions detected by IDS. Unfortunately, the state of the art in IRSs is not as mature as with IDSs. The reaction against intrusions is slow and simple, and these systems have difficulty detecting intrusions in real time and triggering automated responses. This dissertation is to address the existing problem in automated reactions against intrusions using ontologies, formal behaviour languages and semantic reasoners as the basis of the architecture of an automated intrusion response systems or AIRS. The aim is to take advantage of ontologies in heterogeneous environments, in addition to its ability to specify behavior of objects representing the elements of the modeling domain. This ability to specify behavior will be useful for the AIRS in the inference process of the optimum response against an intrusion, as quickly as possible.
Resumo:
Probabilistic graphical models are a huge research field in artificial intelligence nowadays. The scope of this work is the study of directed graphical models for the representation of discrete distributions. Two of the main research topics related to this area focus on performing inference over graphical models and on learning graphical models from data. Traditionally, the inference process and the learning process have been treated separately, but given that the learned models structure marks the inference complexity, this kind of strategies will sometimes produce very inefficient models. With the purpose of learning thinner models, in this master thesis we propose a new model for the representation of network polynomials, which we call polynomial trees. Polynomial trees are a complementary representation for Bayesian networks that allows an efficient evaluation of the inference complexity and provides a framework for exact inference. We also propose a set of methods for the incremental compilation of polynomial trees and an algorithm for learning polynomial trees from data using a greedy score+search method that includes the inference complexity as a penalization in the scoring function.
Resumo:
En esta tesis se ha profundizado en el estudio y desarrollo de modelos de soporte para el aprendizaje colaborativo a distancia, que ha permitido proponer una arquitectura fundamentada en los principios del paradigma CSCL (Computer Supported Collaborative Learning). La arquitectura propuesta aborda un tipo de problema concreto que requiere el uso de técnicas derivadas del Trabajo Colaborativo, la Inteligencia Artificial, Interfaces de Usuario así como ideas tomadas de la Pedagogía y la Psicología. Se ha diseñado una solución completa, abierta y genérica. La arquitectura aprovecha las nuevas tecnologías para lograr un sistema efectivo de apoyo a la educación a distancia. Está organizada en cuatro niveles: el de Configuración, el de Experiencia, el de Organización y el de Análisis. A partir de ella se ha implementado un sistema llamado DEGREE. En DEGREE, cada uno de los niveles de la arquitectura da lugar a un subsistema independiente pero relacionado con los otros. La aplicación saca partido del uso de espacios de trabajo estructurados. El subsistema Configurador de Experiencias permite definir los elementos de un espacio de trabajo y una experiencia y adaptarlos a cada tipo de usuario. El subsistema Manejador de Experiencias recoge las contribuciones de los usuarios para construir una solución conjunta de un problema. Las intervenciones de los alumnos se estructuran basándose en un grafo conversacional genérico. Además, se registran todas las acciones de los usuarios para representar explícitamente el proceso completo que lleva a la solución. Estos datos también se almacenan en una memoria común que constituye el subsistema llamado Memoria Organizativa de Experiencias. El subsistema Analizador estudia las intervenciones de los usuarios. Este análisis permite inferir conclusiones sobre la forma en que trabajan los grupos y sus actitudes frente a la colaboración, teniendo en cuenta además el conocimiento subjetivo del observador. El proceso de desarrollo en paralelo de la arquitectura y el sistema ha seguido un ciclo de refinamiento en cinco fases con sucesivas etapas de prototipado y evaluación formativa. Cada fase de este proceso se ha realizado con usuarios reales y se han considerado las opiniones de los usuarios para mejorar las funcionalidades de la arquitectura así como la interfaz del sistema. Esta aproximación ha permitido, además, comprobar la utilidad práctica y la validez de las propuestas que sustentan este trabajo.---ABSTRACT---In this thesis, we have studied in depth the development of support models for distance collaborative learning and subsequently devised an architecture based on the Computer Supported Collaborative Learning paradigm principles. The proposed architecture addresses a specific problem: coordinating groups of students to perform collaborative distance learning activities. Our approach uses Cooperative Work, Artificial Intelligence and Human-Computer Interaction techniques as well as some ideas from the fields of Pedagogy and Psychology. We have designed a complete, open and generic solution. Our architecture exploits the new information technologies to achieve an effective system for education purposes. It is organised into four levels: Configuration, Experience, Organisation and Reflection. This model has been implemented into a system called DEGREE. In DEGREE, each level of the architecture gives rise to an independent subsystem related to the other ones. The application benefits from the use of shared structured workspaces. The configuration subsystem allows customising the elements that define an experience and a workspace. The experience subsystem gathers the users' contributions to build joint solutions to a given problem. The students' interventions build up a structure based on a generic conversation graph. Moreover, all user actions are registered in order to represent explicitly the complete process for reaching the group solution. Those data are also stored into a common memory, which constitutes the organisation subsystem. The user interventions are studied by the reflection subsystem. This analysis allows us inferring conclusions about the way in which the group works and its attitudes towards collaboration. The inference process takes into account the observer's subjective knowledge. The process of developing both the architecture and the system in parallel has run through a five-pass cycle involving successive stages of prototyping and formative evaluation. At each stage of that process, we have considered the users' feedback for improving the architecture's functionalities as well as the system interface. This approach has allowed us to prove the usability and validity of our proposal.
Resumo:
RDB2RDF systems generate RDF from relational databases, operating in two dierent manners: materializing the database content into RDF or acting as virtual RDF datastores that transform SPARQL queries into SQL. In the former, inferences on the RDF data (taking into account the ontologies that they are related to) are normally done by the RDF triple store where the RDF data is materialised and hence the results of the query answering process depend on the store. In the latter, existing RDB2RDF systems do not normally perform such inferences at query time. This paper shows how the algorithm used in the REQUIEM system, focused on handling run-time inferences for query answering, can be adapted to handle such inferences for query answering in combination with RDB2RDF systems.
Resumo:
RDB2RDF systems generate RDF from relational databases, operating in two di�erent manners: materializing the database content into RDF or acting as virtual RDF datastores that transform SPARQL queries into SQL. In the former, inferences on the RDF data (taking into account the ontologies that they are related to) are normally done by the RDF triple store where the RDF data is materialised and hence the results of the query answering process depend on the store. In the latter, existing RDB2RDF systems do not normally perform such inferences at query time. This paper shows how the algorithm used in the REQUIEM system, focused on handling run-time inferences for query answering, can be adapted to handle such inferences for query answering in combination with RDB2RDF systems.
Resumo:
INTRODUCTION: Objective assessment of motor skills has become an important challenge in minimally invasive surgery (MIS) training.Currently, there is no gold standard defining and determining the residents' surgical competence.To aid in the decision process, we analyze the validity of a supervised classifier to determine the degree of MIS competence based on assessment of psychomotor skills METHODOLOGY: The ANFIS is trained to classify performance in a box trainer peg transfer task performed by two groups (expert/non expert). There were 42 participants included in the study: the non-expert group consisted of 16 medical students and 8 residents (< 10 MIS procedures performed), whereas the expert group consisted of 14 residents (> 10 MIS procedures performed) and 4 experienced surgeons. Instrument movements were captured by means of the Endoscopic Video Analysis (EVA) tracking system. Nine motion analysis parameters (MAPs) were analyzed, including time, path length, depth, average speed, average acceleration, economy of area, economy of volume, idle time and motion smoothness. Data reduction was performed by means of principal component analysis, and then used to train the ANFIS net. Performance was measured by leave one out cross validation. RESULTS: The ANFIS presented an accuracy of 80.95%, where 13 experts and 21 non-experts were correctly classified. Total root mean square error was 0.88, while the area under the classifiers' ROC curve (AUC) was measured at 0.81. DISCUSSION: We have shown the usefulness of ANFIS for classification of MIS competence in a simple box trainer exercise. The main advantage of using ANFIS resides in its continuous output, which allows fine discrimination of surgical competence. There are, however, challenges that must be taken into account when considering use of ANFIS (e.g. training time, architecture modeling). Despite this, we have shown discriminative power of ANFIS for a low-difficulty box trainer task, regardless of the individual significances between MAPs. Future studies are required to confirm the findings, inclusion of new tasks, conditions and sample population.
Resumo:
This study suggests a theoretical framework for improving the teaching/ learning process of English employed in the Aeronautical discourse that brings together cognitive learning strategies, Genre Analysis and the Contemporary theory of Metaphor (Lakoff and Johnson 1980; Lakoff 1993). It maintains that cognitive strategies such as imagery, deduction, inference and grouping can be enhanced by means of metaphor and genre awareness in the context of content based approach to language learning. A list of image metaphors and conceptual metaphors which comes from the terminological database METACITEC is provided. The metaphorical terms from the area of Aeronautics have been taken from specialised dictionaries and have been categorised according to the conceptual metaphors they respond to, by establishing the source domains and the target domains, as well as the semantic networks found. This information makes reference to the internal mappings underlying the discourse of aeronautics reflected in five aviation accident case studies which are related to accident reports from the National Transportation Safety Board (NTSB) and provides an important source for designing language teaching tasks. La Lingüística Cognitiva y el Análisis del Género han contribuido a la mejora de la enseñanza de segundas lenguas y, en particular, al desarrollo de la competencia lingüística de los alumnos de inglés para fines específicos. Este trabajo pretende perfeccionar los procesos de enseñanza y el aprendizaje del lenguaje empleado en el discurso aeronáutico por medio de la práctica de estrategias cognitivas y prestando atención a la Teoría del análisis del género y a la Teoría contemporánea de la metáfora (Lakoff y Johnson 1980; Lakoff 1993). Con el propósito de crear recursos didácticos en los que se apliquen estrategias metafóricas, se ha elaborado un listado de metáforas de imagen y de metáforas conceptuales proveniente de la base de datos terminológica META-CITEC. Estos términos se han clasificado de acuerdo con las metáforas conceptuales y de imagen existentes en esta área de conocimiento. Para la enseñanza de este lenguaje de especialidad, se proponen las correspondencias y las proyecciones entre el dominio origen y el dominio meta que se han hallado en los informes de accidentes aéreos tomados de la Junta federal de la Seguridad en el Transporte (NTSB)