5 resultados para Induced Exposure.

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The approach developed by Fuhrer in 1995 to estimate wheat yield losses induced by ozone and modulated by the soil water content (SWC) was applied to the data on Catalonian wheat yields. The aim of our work was to apply this approach and adjust it to Mediterranean environmental conditions by means of the necessary corrections. The main objective pursued was to prove the importance of soil water availability in the estimation of relative wheat yield losses as a factor that modifies the effects of tropospheric ozone on wheat, and to develop the algorithms required for the estimation of relative yield losses, adapted to the Mediterranean environmental conditions. The results show that this is an easy way to estimate relative yield losses just using meteorological data, without using ozone fluxes, which are much more difficult to calculate. Soil water availability is very important as a modulating factor of the effects of ozone on wheat; when soil water availability decreases, almost twice the amount of accumulated exposure to ozone is required to induce the same percentage of yield loss as in years when soil water availability is high.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ozone (O3) phytototoxicity has been reported on a wide range of crops and wild Central European plantspecies, however no information has been provided regarding the sensitivity of plantspecies from dehesa Mediterranean therophytic grasslands in spite of their great plantspecies richness and the high O3 levels that are recorded in this area. A study was carried out in open-top chambers (OTCs) to assess the effects of O3 and competition on the reproductiveability of threecloverspecies: Trifolium cherleri, Trifolium subterraneum and Trifolium striatum. A phytometer approach was followed, therefore plants of these species were grown in mesoscosms composed of monocultures of four plants of each species, of threeplants of each species competing against a Briza maxima individual or of a single plant of each cloverspecies competing with threeB. maximaplants. Three O3 treatments were adopted: charcoal filtered air (CFA), non-filtered air (NFA) and non-filtered air supplemented with 40 nl l−1 of O3 (NFA+). The different mesocosms were exposed to the different O3 treatments for 45 days and then they remained in the open. Ozoneexposure caused reductions in the flower biomass of the threecloverspecies assessed. In the case of T. cherleri and T. subterraneum this effect was found following their exposure to the different O3 treatments during their vegetative period. An attenuation of these effects was found when the plants remained in the open. Ozone-induced detrimental effects on the seed output of T. striatum were also observed. The flower biomass of the cloverplants grown in monocultures was greater than when competing with one or threeB. maxima individuals. An increased flower biomass was found in the CFA monoculture mesocosms of T. cherleri when compared with the remaining mesocosms, once the plants were exposed in the open for 60 days. The implications of these effects on the performance of dehesa acid grasslands and for the definition of O3 critical levels is discussed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grain-induced asthma is a frequent occupational allergic disease mainly caused by inhalation of cereal flour or powder. The main professions affected are bakers, confectioners, pastry factory workers, millers, farmers, and cereal handlers. This disorder is usually due to an IgE-mediated allergic response to inhalation of cereal flour proteins. The major causative allergens of grain-related asthma are proteins derived from wheat, rye and barley flour, although baking additives, such as fungal α-amylase are also important. This review deals with the current diagnosis and treatment of grain-induced asthma, emphasizing the role of cereal allergens as molecular tools to enhance diagnosis and management of this disorder. Asthma-like symptoms caused by endotoxin exposure among grain workers are beyond the scope of this review. Progress is being made in the characterization of grain and bakery allergens, particularly cereal-derived allergens, as well as in the standardization of allergy tests. Salt-soluble proteins (albumins plus globulins), particularly members of the α-amylase/trypsin inhibitor family, thioredoxins, peroxidase, lipid transfer protein and other soluble enzymes show the strongest IgE reactivities in wheat flour. In addition, prolamins (not extractable by salt solutions) have also been claimed as potential allergens. However, the large variability of IgE-binding patterns of cereal proteins among patients with grain-induced asthma, together with the great differences in the concentrations of potential allergens observed in commercial cereal extracts used for diagnosis, highlight the necessity to standardize and improve the diagnostic tools. Removal from exposure to the offending agents is the cornerstone of the management of grain-induced asthma. The availability of purified allergens should be very helpful for a more refined diagnosis, and new immunomodulatory treatments, including allergen immunotherapy and biological drugs, should aid in the management of patients with this disorder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Palm juice, a common-cheap-antioxidants rich natural plant juice has been investigated for optimizing the effect of UV-radiation on the antioxidant activity using a DPPH free radical scavenging activity method. In this study separate set of samples of raw palm juice has been treated with 365 and 254 nm UV-lights (UVL) respectively for different exposure time. When exposed for 15 min with 365 nm UVL induces concentration factor of caffeic acid, whereas, 254 nm UVL induces gallic acid accumulation, but overall antioxidant activity was higher for 365 nm UVradiation. Caffeic acid and other polyphenol compounds are increased by 5.5 ± 0.5 % than normal palm juice, observed after irradiation with 365 nm UVL. Even after the exposure of UV irradiation for 15 min, did not affect on peptide bond modification of protein molecules present in palm juice, therefore a green effect of UVL is explored for the effective increase of antioxidant activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bakers are repeatedly exposed to wheat flour (WF) and may develop sensitization and occupational rhinoconjunctivitis and/or asthma to WF allergens.1 Several wheat proteins have been identified as causative allergens of occupational respiratory allergy in bakery workers.1 Testing of IgE reactivity in patients with different clinical profiles of wheat allergy (food allergy, wheat-dependent exercise-induced anaphylaxis, and baker's asthma) to salt-soluble and salt-insoluble protein fractions from WF revealed a high degree of heterogeneity in the recognized allergens. However, mainly salt-soluble proteins (albumins, globulins) seem to be associated with baker's asthma, and prolamins (gliadins, glutenins) with wheat-dependent exercise-induced anaphylaxis, whereas both protein fractions reacted to IgE from food-allergic patients.1 Notwithstanding, gliadins have also been incriminated as causative allergens in baker's asthma.2 We report on a 31-year-old woman who had been exposed to WF practically since birth because her family owned a bakery housed in the same home where they lived. She moved from this house when she was 25 years, but she continued working every day in the family bakery. In the last 8 years she had suffered from work-related nasal and ocular symptoms such as itching, watery eyes, sneezing, nasal stuffiness, and rhinorrhea. These symptoms markedly improved when away from work and worsened at work. In the last 5 years, she had also experienced dysphagia with frequent choking, especially when ingesting meats or cephalopods, which had partially improved with omeprazole therapy. Two years before referral to our clinic, she began to have dry cough and breathlessness, which she also attributed to her work environment. Upper and lower respiratory tract symptoms increased when sifting the WF and making the dough. The patient did not experience gastrointestinal symptoms with ingestion of cereal products. Skin prick test results were positive to grass (mean wheal, 6 mm), cypress (5 mm) and Russian thistle pollen (4 mm), WF (4 mm), and peach lipid transfer protein (6 mm) and were negative to rice flour, corn flour, profilin, mites, molds, and animal dander. Skin prick test with a homemade WF extract (10% wt/vol) was strongly positive (15 mm). Serologic tests yielded the following results: eosinophil cationic protein, 47 ?g/L; total serum IgE, 74 kU/L; specific IgE (ImmunoCAP; ThermoFisher, Uppsala, Sweden) to WF, 7.4 kU/L; barley flour, 1.24 kU/L; and corn, gluten, alpha-amylase, peach, and apple, less than 0.35 kU/L. Specific IgE binding to microarrayed purified WF allergens (WDAI-0.19, WDAI-0.53, WTAI-CM1, WTAI-CM2, WTAI-CM3, WTAI-CM16, WTAI-CM17, Tri a 14, profilin, ?-5-gliadin, Tri a Bd 36 and Tri a TLP, and gliadin and glutamine fractions) was assessed as described elsewhere.3 The patient's serum specifically recognized ?-5-gliadin and the gliadin fraction, and no IgE reactivity was observed to other wheat allergens. Spirometry revealed a forced vital capacity of 3.88 L (88%), an FEV1 of 3.04 L (87%), and FEV1/forced vital capacity of 83%. A methacholine inhalation test was performed following an abbreviated protocol,4 and the results were expressed as PD20 in cumulative dose (mg) of methacholine. Methacholine inhalation challenge test result was positive (0.24 mg cumulative dose) when she was working, and after a 3-month period away from work and with no visits to the bakery house, it gave a negative result. A chest x-ray was normal. Specific inhalation challenge test was carried out in the hospital laboratory by tipping WF from one tray to another for 15 minutes. Spirometry was performed at baseline and at 2, 5, 10, 15, 20, 30, 45, and 60 minutes after the challenge with WF. Peak expiratory flow was measured at baseline and then hourly over 24 hours (respecting sleeping time). A 12% fall in FEV1 was observed at 20 minutes and a 26% drop in peak expiratory flow at 9 hours after exposure to WF,