28 resultados para Individual-based modeling
em Universidad Politécnica de Madrid
Resumo:
Modeling and prediction of the overall elastic–plastic response and local damage mechanisms in heterogeneous materials, in particular particle reinforced composites, is a very complex problem. Microstructural complexities such as the inhomogeneous spatial distribution of particles, irregular morphology of the particles, and anisotropy in particle orientation after secondary processing, such as extrusion, significantly affect deformation behavior. We have studied the effect of particle/matrix interface debonding in SiC particle reinforced Al alloy matrix composites with (a) actual microstructure consisting of angular SiC particles and (b) idealized ellipsoidal SiC particles. Tensile deformation in SiC particle reinforced Al matrix composites was modeled using actual microstructures reconstructed from serial sectioning approach. Interfacial debonding was modeled using user-defined cohesive zone elements. Modeling with the actual microstructure (versus idealized ellipsoids) has a significant influence on: (a) localized stresses and strains in particle and matrix, and (b) far-field strain at which localized debonding takes place. The angular particles exhibited higher degree of load transfer and are more sensitive to interfacial debonding. Larger decreases in stress are observed in the angular particles, because of the flat surfaces, normal to the loading axis, which bear load. Furthermore, simplification of particle morphology may lead to erroneous results.
Resumo:
The SESAR (Single European Sky ATM Research) program is an ambitious re-search and development initiative to design the future European air traffic man-agement (ATM) system. The study of the behavior of ATM systems using agent-based modeling and simulation tools can help the development of new methods to improve their performance. This paper presents an overview of existing agent-based approaches in air transportation (paying special attention to the challenges that exist for the design of future ATM systems) and, subsequently, describes a new agent-based approach that we proposed in the CASSIOPEIA project, which was developed according to the goals of the SESAR program. In our approach, we use agent models for different ATM stakeholders, and, in contrast to previous work, our solution models new collaborative decision processes for flow traffic management, it uses an intermediate level of abstraction (useful for simulations at larger scales), and was designed to be a practical tool (open and reusable) for the development of different ATM studies. It was successfully applied in three stud-ies related to the design of future ATM systems in Europe.
Resumo:
The existing seismic isolation systems are based on well-known and accepted physical principles, but they are still having some functional drawbacks. As an attempt of improvement, the Roll-N-Cage (RNC) isolator has been recently proposed. It is designed to achieve a balance in controlling isolator displacement demands and structural accelerations. It provides in a single unit all the necessary functions of vertical rigid support, horizontal flexibility with enhanced stability, resistance to low service loads and minor vibration, and hysteretic energy dissipation characteristics. It is characterized by two unique features that are a self-braking (buffer) and a self-recentering mechanism. This paper presents an advanced representation of the main and unique features of the RNC isolator using an available finite element code called SAP2000. The validity of the obtained SAP2000 model is then checked using experimental, numerical and analytical results. Then, the paper investigates the merits and demerits of activating the built-in buffer mechanism on both structural pounding mitigation and isolation efficiency. The paper addresses the problem of passive alleviation of possible inner pounding within the RNC isolator, which may arise due to the activation of its self-braking mechanism under sever excitations such as near-fault earthquakes. The results show that the obtained finite element code-based model can closely match and accurately predict the overall behavior of the RNC isolator with effectively small errors. Moreover, the inherent buffer mechanism of the RNC isolator could mitigate or even eliminate direct structure-tostructure pounding under severe excitation considering limited septation gaps between adjacent structures. In addition, the increase of inherent hysteretic damping of the RNC isolator can efficiently limit its peak displacement together with the severity of the possibly developed inner pounding and, therefore, alleviate or even eliminate the possibly arising negative effects of the buffer mechanism on the overall RNC-isolated structural responses.
Resumo:
Ripple-based controls can strongly reduce the required output capacitance in PowerSoC converter thanks to a very fast dynamic response. Unfortunately, these controls are prone to sub-harmonic oscillations and several parameters affect the stability of these systems. This paper derives and validates a simulation-based modeling and stability analysis of a closed-loop V 2Ic control applied to a 5 MHz Buck converter using discrete modeling and Floquet theory to predict stability. This allows the derivation of sensitivity analysis to design robust systems. The work is extended to different V 2 architectures using the same methodology.
Resumo:
By 2050 it is estimated that the number of worldwide Alzheimer?s disease (AD) patients will quadruple from the current number of 36 million people. To date, no single test, prior to postmortem examination, can confirm that a person suffers from AD. Therefore, there is a strong need for accurate and sensitive tools for the early diagnoses of AD. The complex etiology and multiple pathogenesis of AD call for a system-level understanding of the currently available biomarkers and the study of new biomarkers via network-based modeling of heterogeneous data types. In this review, we summarize recent research on the study of AD as a connectivity syndrome. We argue that a network-based approach in biomarker discovery will provide key insights to fully understand the network degeneration hypothesis (disease starts in specific network areas and progressively spreads to connected areas of the initial loci-networks) with a potential impact for early diagnosis and disease-modifying treatments. We introduce a new framework for the quantitative study of biomarkers that can help shorten the transition between academic research and clinical diagnosis in AD.
Resumo:
We investigate optimal strategies to defend valuable goods against the attacks of a thief. Given the value of the goods and the probability of success for the thief, we look for the strategy that assures the largest benefit to each player irrespective of the strategy of his opponent. Two complementary approaches are used: agent-based modeling and game theory. It is shown that the compromise between the value of the goods and the probability of success defines the mixed Nash equilibrium of the game, that is compared with the results of the agent-based simulations and discussed in terms of the system parameters.
Resumo:
Actualmente existen aplicaciones que permiten simular el comportamiento de bacterias en distintos hábitats y los procesos que ocurren en estos para facilitar su estudio y experimentación sin la necesidad de un laboratorio. Una de las aplicaciones de software libre para la simulación de poblaciones bacteriológicas mas usada es iDynoMiCS (individual-based Dynamics of Microbial Communities Simulator), un simulador basado en agentes que permite trabajar con varios modelos computacionales de bacterias en 2D y 3D. Este simulador permite una gran libertad al configurar una numerosa cantidad de variables con respecto al entorno, reacciones químicas y otros detalles importantes. Una característica importante es el poder simular de manera sencilla la conjugación de plásmidos entre bacterias. Los plásmidos son moléculas de ADN diferentes del cromosoma celular, generalmente circularles, que se replican, transcriben y conjugan independientemente del ADN cromosómico. Estas están presentes normalmente en bacterias procariotas, y en algunas ocasiones en eucariotas, sin embargo, en este tipo de células son llamados episomas. Dado el complejo comportamiento de los plásmidos y la gama de posibilidades que estos presentan como mecanismos externos al funcionamiento básico de la célula, en la mayoría de los casos confiriéndole distintas ventajas evolutivas, como por ejemplo: resistencia antibiótica, entre otros, resulta importante su estudio y subsecuente manipulación. Sin embargo, el marco operativo del iDynoMiCS, en cuanto a simulación de plásmidos se refiere, es demasiado sencillo y no permite realizar operaciones más complejas que el análisis de la propagación de un plásmido en la comunidad. El presente trabajo surge para resolver esta deficiencia de iDynomics. Aquí se analizarán, desarrollarán e implementarán las modificaciones necesarias para que iDynomics pueda simular satisfactoriamente y mas apegado a la realidad la conjugación de plásmidos y permita así mismo resolver distintas operaciones lógicas, como lo son los circuitos genéticos, basadas en plásmidos. También se analizarán los resultados obtenidos de acuerdo a distintos estudios relevantes y a la comparación de los resultados obtenidos con el código original de iDynomics. Adicionalmente se analizará un estudio comparando la eficiencia de detección de una sustancia mediante dos circuitos genéticos distintos. Asimismo el presente trabajo puede tener interés para el grupo LIA de la Facultad de Informática de la Universidad Politécnica de Madrid, el cual está participando en el proyecto europeo BACTOCOM que se centra en el estudio de la conjugación de plásmidos y circuitos genéticos. --ABSTRACT--Currently there are applications that simulate the behavior of bacteria in different habitats and the ongoing processes inside them to facilitate their study and experimentation without the need for an actual laboratory. One of the most used open source applications to simulate bacterial populations is iDynoMiCS (individual-based Dynamics of Microbial Communities Simulator), an agent-based simulator that allows working with several computer models of 2D and 3D bacteria in biofilms. This simulator allows great freedom by means of a large number of configurable variables regarding environment, chemical reactions and other important details of the simulation. Within these characteristics there exists a very basic framework to simulate plasmid conjugation. Plasmids are DNA molecules physically different from the cell’s chromosome, commonly found as small circular, double-stranded DNA molecules that are replicated, conjugated and transcribed independently of chromosomal DNA. These bacteria are normally present in prokaryotes and sometimes in eukaryotes, which in this case these cells are called episomes. Plasmids are external mechanisms to the cells basic operations, and as such, in the majority of the cases, confer to the host cell various evolutionary advantages, like antibiotic resistance for example. It is mperative to further study plasmids and the possibilities they present. However, the operational framework of the iDynoMiCS plasmid simulation is too simple, and does not allow more complex operations that the analysis of the spread of a plasmid in the community. This project was conceived to resolve this particular deficiency in iDynomics, moreover, in this paper is discussed, developed and implemented the necessary changes to iDynomics simulation software so it can satisfactorily and realistically simulate plasmid conjugation, and allow the possibility to solve various ogic operations, such as plasmid-based genetic circuits. Moreover the results obtained will be analyzed and compared with other relevant studies and with those obtained with the original iDynomics code. Conjointly, an additional study detailing the sensing of a substance with two different genetic circuits will be presented. This work may also be relevant to the LIA group of the Faculty of Informatics of the Polytechnic University of Madrid, which is participating in the European project BACTOCOM that focuses on the study of the of plasmid conjugation and genetic circuits.
Resumo:
We present a novel framework for encoding latency analysis of arbitrary multiview video coding prediction structures. This framework avoids the need to consider an specific encoder architecture for encoding latency analysis by assuming an unlimited processing capacity on the multiview encoder. Under this assumption, only the influence of the prediction structure and the processing times have to be considered, and the encoding latency is solved systematically by means of a graph model. The results obtained with this model are valid for a multiview encoder with sufficient processing capacity and serve as a lower bound otherwise. Furthermore, with the objective of low latency encoder design with low penalty on rate-distortion performance, the graph model allows us to identify the prediction relationships that add higher encoding latency to the encoder. Experimental results for JMVM prediction structures illustrate how low latency prediction structures with a low rate-distortion penalty can be derived in a systematic manner using the new model.
Resumo:
Getting a lower energy cost has always been a challenge for concentrated photovoltaic. The FK concentrator enhances the performance (efficiency, acceptance angle and manufacturing tolerances) of the conventional CPV system based on a Fresnel primary stage and a secondary lens, while keeping its simplicity and potentially low‐cost manufacturing. At the same time F‐XTP (Fresnel lens+reflective prism), at the first glance has better cost potential but significantly higher sensitivity to manufacturing errors. This work presents comparison of these two approaches applied to two main technologies of Fresnel lens production (PMMA and Silicone on Glass) and effect of standard deformations that occur under real operation conditions
Resumo:
The purpose of this work is to propose a structure for simulating power systems using behavioral models of nonlinear DC to DC converters implemented through a look-up table of gains. This structure is specially designed for converters whose output impedance depends on the load current level, e.g. quasi-resonant converters. The proposed model is a generic one whose parameters can be obtained by direct measuring the transient response at different operating points. It also includes optional functionalities for modeling converters with current limitation and current sharing in paralleling characteristics. The pusposed structured also allows including aditional characteristics of the DC to DC converter as the efficency as a function of the input voltage and the output current or overvoltage and undervoltage protections. In addition, this proposed model is valid for overdamped and underdamped situations.
Resumo:
In the field of detection and monitoring of dynamic objects in quasi-static scenes, background subtraction techniques where background is modeled at pixel-level, although showing very significant limitations, are extensively used. In this work we propose a novel approach to background modeling that operates at region-level in a wavelet based multi-resolution framework. Based on a segmentation of the background, characterization is made for each region independently as a mixture of K Gaussian modes, considering the model of the approximation and detail coefficients at the different wavelet decomposition levels. Background region characterization is updated along time, and the detection of elements of interest is carried out computing the distance between background region models and those of each incoming image in the sequence. The inclusion of the context in the modeling scheme through each region characterization makes the model robust, being able to support not only gradual illumination and long-term changes, but also sudden illumination changes and the presence of strong shadows in the scene
Resumo:
Here, a novel and efficient moving object detection strategy by non-parametric modeling is presented. Whereas the foreground is modeled by combining color and spatial information, the background model is constructed exclusively with color information, thus resulting in a great reduction of the computational and memory requirements. The estimation of the background and foreground covariance matrices, allows us to obtain compact moving regions while the number of false detections is reduced. Additionally, the application of a tracking strategy provides a priori knowledge about the spatial position of the moving objects, which improves the performance of the Bayesian classifier
Resumo:
A three node, displacement based, acoustic element is developed. In order to avoid spurious rotational modes, a higher order stiffness is introduced. The higher order stiffness is developed from an incompatible strain field which computes element volume changes under nodal rotational displacements fields. The higher order strain satisfies the IET requirements, non affecting convergence. The higher order stiffness is modulated, element by element, with a factor. Thus, the displacement based formulation is capable of placing the spurious rotational modes over the range of physical compressional modes that can be accurately captured by the mesh.
Resumo:
This paper studies feature subset selection in classification using a multiobjective estimation of distribution algorithm. We consider six functions, namely area under ROC curve, sensitivity, specificity, precision, F1 measure and Brier score, for evaluation of feature subsets and as the objectives of the problem. One of the characteristics of these objective functions is the existence of noise in their values that should be appropriately handled during optimization. Our proposed algorithm consists of two major techniques which are specially designed for the feature subset selection problem. The first one is a solution ranking method based on interval values to handle the noise in the objectives of this problem. The second one is a model estimation method for learning a joint probabilistic model of objectives and variables which is used to generate new solutions and advance through the search space. To simplify model estimation, l1 regularized regression is used to select a subset of problem variables before model learning. The proposed algorithm is compared with a well-known ranking method for interval-valued objectives and a standard multiobjective genetic algorithm. Particularly, the effects of the two new techniques are experimentally investigated. The experimental results show that the proposed algorithm is able to obtain comparable or better performance on the tested datasets.
Resumo:
This paper proposes a new multi-objective estimation of distribution algorithm (EDA) based on joint modeling of objectives and variables. This EDA uses the multi-dimensional Bayesian network as its probabilistic model. In this way it can capture the dependencies between objectives, variables and objectives, as well as the dependencies learnt between variables in other Bayesian network-based EDAs. This model leads to a problem decomposition that helps the proposed algorithm to find better trade-off solutions to the multi-objective problem. In addition to Pareto set approximation, the algorithm is also able to estimate the structure of the multi-objective problem. To apply the algorithm to many-objective problems, the algorithm includes four different ranking methods proposed in the literature for this purpose. The algorithm is applied to the set of walking fish group (WFG) problems, and its optimization performance is compared with an evolutionary algorithm and another multi-objective EDA. The experimental results show that the proposed algorithm performs significantly better on many of the problems and for different objective space dimensions, and achieves comparable results on some compared with the other algorithms.