2 resultados para Indiana. Board of State Charities

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of matter under conditions of high density, pressure, and temperature is a valuable subject for inertial confinement fusion (ICF), astrophysical phenomena, high-power laser interaction with matter, etc. In all these cases, matter is heated and compressed by strong shocks to high pressures and temperatures, becomes partially or completely ionized via thermal or pressure ionization, and is in the form of dense plasma. The thermodynamics and the hydrodynamics of hot dense plasmas cannot be predicted without the knowledge of the equation of state (EOS) that describes how a material reacts to pressure and how much energy is involved. Therefore, the equation of state often takes the form of pressure and energy as functions of density and temperature. Furthermore, EOS data must be obtained in a timely manner in order to be useful as input in hydrodynamic codes. By this reason, the use of fast, robust and reasonably accurate atomic models, is necessary for computing the EOS of a material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We will present recent developments in the calculation of opacity and equation of state tables suitable for including in the radiation hydrodynamic code ARWEN [1] to study processes like ICF or X-ray secondary sources. For these calculations we use the code BiG BART to compute opacities in LTE conditions, with self-consistent data generated with the Flexible Atomic Code (FAC) [2]. Non-LTE effects are approximately taken into account by means of the improved RADIOM model [3], which makes use of existing LTE data tables. We use the screened-hydrogenic model [4] to derive the Equation of State using the population and energy of the levels avaliable from the atomic data