3 resultados para Index of losses

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of biofuels in the aviation sector has economic and environmental benefits. Among the options for the production of renewable jet fuels, hydroprocessed esters and fatty acids (HEFA) have received predominant attention in comparison with fatty acid methyl esters (FAME), which are not approved as additives for jet fuels. However, the presence of oxygen in methyl esters tends to reduce soot emissions and therefore particulate matter emissions. This sooting tendency is quantified in this work with an oxygen-extended sooting index, based on smoke point measurements. Results have shown considerable reduction in the sooting tendency for all biokerosenes (produced by transesterification and eventually distillation) with respect to fossil kerosenes. Among the tested biokerosenes, that made from palm kernel oil was the most effective one, and nondistilled methyl esters (from camelina and linseed oils) showed lower effectiveness than distilled biokerosenes to reduce the sooting tendency. These results may constitute an additional argument for the use of FAME’s as blend components of jet fuels. Other arguments were pointed out in previous publications, but some controversy has aroused over the use of these components. Some of the criticism was based on the fact that the methods used in our previous work are not approved for jet fuels in the standard methods and concluded that the use of FAME in any amount is, thus, inappropriate. However, some of the standard methods are not updated for considering oxygenated components (like the method for obtaining the lower heating value), and others are not precise enough (like the methods for measuring the freezing point), whereas some alternative methods may provide better reproducibility for oxygenated fuels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diseases that affect garlic during storage can lead to severe economic losses for farmers worldwide. One causal agent of clove rot is Fusarium proliferatum. Here, the progress of clove rot caused by F. proliferatum and its dependence on different storage conditions and cultivar type were studied. The effect of temperature on mycelial growth, conidial viability, and fungal survival during garlic commercial storage was documented. Samples of 50 bulbs from a randomized field trial with three different clonal generations for purple garlic (F3, F4 and F5) and the F4 clonal generation for white garlic were labeled and stored for two months (short-term storage). In addition, another sample of the F5 clonal generation of purple garlic was stored for 6 months after harvest (long-term storage). The presence of the pathogen and the percentage of symptomatic cloves were evaluated. A notable difference in the rot severity index (RSI) of different garlic varieties was observed. In all studied cases, clove rot increased with storage time at 20 ◦ C, and the white garlic variety had a higher index of rot severity after two months of storage. Additionally, there were clear differences between the growth rates of F. proliferatum isolates. Studies conducted on the temperature responses of the pathogen propagules showed that expo- sure for at least 20 min at 50 ◦ C was highly effective in significantly reducing the viability of fungal conidia. Pathogenicity studies showed that the fungus is pathogenic in all commercial varieties. However, there were significant differences in varietal susceptibility between Chinese and white garlic type cultivars (81.84 ± 16.44% and 87.5 ± 23.19% symptomatic cloves, respectively) and purple cultivars (49.06 ± 13.42% symptomatic cloves)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multijunction solar cells (MJSC) use anti-reflective coatings (ARC) to minimize Fresnel reflection losses for a family of light incidence angles. These coatings adapt the refractive index of the cell to that of the surrounding medium. Patterns with sizes in the range of the light wavelength can be used to further reduce reflections through diffraction. Transparent nanopatterns with a gradual profile, called moth-eye nanostructures, can adapt the refractive index of the optical interfaces (often with n∼1.5) used to encapsulate concentrator solar cells to that of the air (n air∼1). Here we show the effect of a nanometric moth-eye ARC with a round motif deposited on commercial MJSC that achieves short-circuit current (I SC) gains greater than 2% at normal incidence and even higher in the case of tilted illumination. In this work, MJSC with different moth-eye ARC are characterized under quantum efficiency (QE) as well as under concentrated illumination I-V in order to assess their potential. Simulations based on coupled wave analysis (RCWA) are used to fit the experimental results with successful results.