2 resultados para Indentação instrumentada

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hoy en día, el refuerzo y reparación de estructuras de hormigón armado mediante el pegado de bandas de polímeros reforzados con fibras (FRP) se emplea cada vez con más frecuencia a causa de sus numerosas ventajas. Sin embargo, las vigas reforzadas con esta técnica pueden experimentar un modo de fallo frágil a causa del despegue repentino de la banda de FRP a partir de una fisura intermedia. A pesar de su importancia, el número de trabajos que abordan el estudio de este mecanismo de fallo y su monitorización es muy limitado. Por ello, el desarrollo de metodologías capaces de monitorizar a largo plazo la adherencia de este refuerzo a las estructuras de hormigón e identificar cuándo se inicia el despegue de la banda constituyen un importante desafío a abordar. El principal objetivo de esta tesis es la implementación de una metodología fiable y efectiva, capaz de detectar el despegue de una banda de FRP en una viga de hormigón armado a partir de una fisura intermedia. Para alcanzar este objetivo se ha implementado un procedimiento de calibración numérica a partir de ensayos experimentales. Para ello, en primer lugar, se ha desarrollado un modelo numérico unidimensional simple y no costoso representativo del comportamiento de este tipo vigas de hormigón reforzadas con FRP, basado en un modelo de fisura discreta para el hormigón y el método de elementos espectrales. La formación progresiva de fisuras a flexion y el consiguiente despegue en la interface entre el hormigón y el FRP se formulan mediante la introducción de un nuevo elemento capaz de representar ambos fenómenos simultáneamente sin afectar al procedimiento numérico. Además, con el modelo propuesto, se puede obtener de una forma sencilla la respuesta dinámica en altas frecuencias de este tipo de estructuras, lo cual puede hacer muy útil su uso como herramienta de diagnosis y detección del despegue en su fase inicial mediante una monitorización de la variación de las características dinámicas locales de la estructura. Un método de evaluación no destructivo muy prometedor para la monitorización local de las estructuras es el método de la impedancia usando sensores-actuadores piezoeléctricos (PZT). La impedancia eléctrica de los sensores PZT se puede relacionar con la impedancia mecánica de las estructuras donde se encuentran adheridos Ya que la impedancia mecánica de una estructura se verá afectada por su deterioro, se pueden implementar indicadores de daño mediante una comparación del espectro de admitancia (inversa de la impedancia) a lo largo de distintas etapas durante el periodo de servicio de una estructura. Cualquier cambio en el espectro se podría interpretar como una variación en la integridad de la estructura. La impedancia eléctrica se mide a altas frecuencias con lo cual esta metodología debería ser muy sensible a la detección de estados de daño incipiente local, tal como se desea en la aplicación de este trabajo. Se ha implementado un elemento espectral PZT-FRP como extensión del modelo previamente desarrollado, con el objetivo de poder calcular numéricamente la impedancia eléctrica de sensores PZT adheridos a bandas de FRP sobre una viga de hormigón armado. El modelo, combinado con medidas experimentales captadas mediante sensores PZT, se implementa en el marco de una metodología de calibración de modelos para detectar cuantitativamente el despegue en la interfase entre una banda de FRP y una viga de hormigón. El procedimiento de optimización se resuelve empleando el método del enjambre cooperativo con un algoritmo bagging. Los resultados muestran una gran aproximación en la estimación del daño para el problema propuesto. Adicionalmente, se ha desarrollado también un método adaptativo para el mallado de elementos espectrales con el objetivo de localizar las zonas dañadas a partir de los resultados experimentales, el cual contribuye a aumentar la robustez y efectividad del método propuesto a la hora de identificar daños incipientes en su aparición inicial. Finalmente, se ha llevado a cabo un procedimiento de optimización multi-objetivo para detectar el despegue inicial en una viga de hormigón a escala real reforzada con FRP a partir de las impedancias captadas con una red de sensores PZT instrumentada a lo largo de la longitud de la viga. Cada sensor aporta los datos para definir cada una de las funciones objetivo que definen el procedimiento. Combinando el modelo previo de elementos espectrales con un algoritmo PSO multi-objetivo el procedimiento de detección de daño resultante proporciona resultados satisfactorios considerando la escala de la estructura y todas las incertidumbres características ligadas a este proceso. Los resultados obtenidos prueban la viabilidad y capacidad de los métodos antes mencionados y también su potencial en aplicaciones reales. Abstract Nowadays, the external bonding of fibre reinforced polymer (FRP) plates or sheets is increasingly used for the strengthening and retrofitting of reinforced concrete (RC) structures due to its numerous advantages. However, this kind of strengthening often leads to brittle failure modes being the most dominant failure mode the debonding induced by an intermediate crack (IC). In spite of its importance, the number of studies regarding the IC debonding mechanism and bond health monitoring is very limited. Methodologies able to monitor the long-term efficiency of bonding and successfully identify the initiation of FRP debonding constitute a challenge to be met. The main purpose of this thesisis the implementation of a reliable and effective methodology of damage identification able to detect intermediate crack debonding in FRP-strengthened RC beams. To achieve this goal, a model updating procedure based on numerical simulations and experimental tests has been implemented. For it, firstly, a simple and non-expensive one-dimensional model based on the discrete crack approach for concrete and the spectral element method has been developed. The progressive formation of flexural cracks and subsequent concrete-FRP interfacial debonding is formulated by the introduction of a new element able to represent both phenomena simultaneously without perturbing the numerical procedure. Furthermore, with the proposed model, high frequency dynamic response for these kinds of structures can also be obtained in a very simple and non-expensive way, which makes this procedure very useful as a tool for diagnoses and detection of debonding in its initial stage by monitoring the change in local dynamic characteristics. One very promising active non-destructive evaluation method for local monitoring is impedance-based structural health monitoring(SHM)using piezoelectric ceramic (PZT) sensor-actuators. The electrical impedance of the PZT can be directly related to the mechanical impedance of the host structural component where the PZT transducers are attached. Since the structural mechanical impedance will be affected by the presence of structural damage, comparisons of admittance (inverse of impedance) spectra at various times during the service period of the structure can be used as damage indicator. Any change in the spectra might be an indication of a change in the structural integrity. The electrical impedance is measured at high frequencies with which this methodology appears to be very sensitive to incipient damage in structural systems as desired for our application. Abonded-PZT-FRP spectral beam element approach based on an extension of the previous discrete crack approach is implemented in the calculation of the electrical impedance of the PZT transducer bonded to the FRP plates of a RC beam. This approach in conjunction with the experimental measurements of PZT actuator-sensors mounted on the structure is used to present an updating methodology to quantitatively detect interfacial debonding between a FRP strip and the host RC structure. The updating procedure is solved by using an ensemble particle swarm optimization approach with abagging algorithm, and the results demonstrate a big improvement for the performance and accuracy of the damage detection in the proposed problem. Additionally, an adaptive strategy of spectral element mesh has been also developed to detect damage location with experimental results, which shows the robustness and effectiveness of the proposed method to identify initial and incipient damages at its early stage. Lastly, multi-objective optimization has been carried out to detect debonding damage in a real scale FRP-strengthened RC beam by using impedance signatures. A net of PZT sensors is distributed along the beam to construct impedance-based multiple objectives under gradually induced damage scenario. By combining the spectral element model presented previously and an ensemble multi-objective PSO algorithm, the implemented damage detection process yields satisfactory predictions considering the scale and uncertainties of the structure. The obtained results prove the feasibility and capability of the aforementioned methods and also their potentials in real engineering applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En los últimos años, y asociado al desarrollo de la tecnología MEMS, la técnica de indentación instrumentada se ha convertido en un método de ensayo no destructivo ampliamente utilizado para hallar las características elástico-plásticas de recubrimientos y capas delgadas, desde la escala macroscópica a la microscópica. Sin embargo, debido al complejo mecanismo de contacto debajo de la indentación, es urgente proponer un método más simple y conveniente para obtener unos resultados comparables con otras mediciones tradicionales. En este estudio, el objetivo es mejorar el procedimiento analítico para extraer las propiedades elástico-plásticas del material mediante la técnica de indentación instrumentada. La primera parte se centra en la metodología llevada a cabo para medir las propiedades elásticas de los materiales elásticos, presentándose una nueva metodología de indentación, basada en la evolución de la rigidez de contacto y en la curva fuerza-desplazamiento del ensayo de indentación. El método propuesto permite discriminar los valores de indentación experimental que pudieran estar afectados por el redondeo de la punta del indentador. Además, esta técnica parece ser robusta y permite obtener valores fiables del modulo elástico. La segunda parte se centra en el proceso analítico para determinar la curva tensión-deformación a partir del ensayo de indentación, empleando un indentador esférico. Para poder asemejar la curva tension-deformación de indentación con la que se obtendría de un ensayo de tracción, Tabor determinó empíricamente un factor de constricción de la tensión () y un factor de constricción de la deformación (). Sin embargo, la elección del valor de y  necesitan una derivación analítica. Se describió analíticamente una nueva visión de la relación entre los factores de constricción de tensión y la deformación basado en la deducción de la ecuación de Tabor. Un modelo de elementos finitos y un diseño experimental se realizan para evaluar estos factores de constricción. A partir de los resultados obtenidos, las curvas tension-deformación extraidas de los ensayos de indentación esférica, afectadas por los correspondientes factores de constricción de tension y deformación, se ajustaron a la curva nominal tensión-deformación obtenida de ensayos de tracción convencionales. En la última parte, se estudian las propiedades del revestimiento de cermet Inconel 625-Cr3C2 que es depositado en el medio de una aleación de acero mediante un láser. Las propiedades mecánicas de la matriz de cermet son estudiadas mediante la técnica de indentación instrumentada, haciendo uso de las metodologías propuestas en el presente trabajo. In recent years, along with the development of MEMS technology, instrumented indentation, as one type of a non-destructive measurement technique, is widely used to characterize the elastic and plastic properties of metallic materials from the macro to the micro scale. However, due to the complex contact mechanisms under the indentation tip, it is necessary to propose a more convenient and simple method of instrumented indention to obtain comparable results from other conventional measurements. In this study, the aim is to improve the analytical procedure for extracting the elastic plastic properties of metallic materials by instrumented indentation. The first part focuses on the methodology for measuring the elastic properties of metallic materials. An alternative instrumented indentation methodology is presented. Based on the evolution of the contact stiffness and indentation load versus the depth of penetration, the possibility of obtaining the actual elastic modulus of an elastic-plastic bulk material through instrumented sharp indentation tests has been explored. The proposed methodology allows correcting the effect of the rounding of the indenter tip on the experimental indentation data. Additionally, this technique does not seem too sensitive to the pile-up phenomenon and allows obtaining convincing values of the elastic modulus. In the second part, an analytical procedure is proposed to determine the representative stress-strain curve from the spherical indentation. Tabor has determined the stress constraint factor (stress CF), and strain constraint factor (strain CF), empirically but the choice of a value for and is debatable and lacks analytical derivation. A new insight into the relationship between stress and strain constraint factors is analytically described based on the formulation of Tabor’s equation. Finite element model and experimental tests have been carried out to evaluate these constraint factors. From the results, representative stress-strain curves using the proposed strain constraint factor fit better with the nominal stress-strain curve than those using Tabor’s constraint factors. In the last part, the mechanical properties of an Inconel 625-Cr3C2 cermet coating which is deposited onto a medium alloy steel by laser cladding has been studied. The elastic and plastic mechanical properties of the cermet matrix are studied using depth-sensing indentation (DSI) on the micro scale.