36 resultados para Illinois Spent Nuclear Fuel and High-Level Waste Inspection and Escort Program.

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuel cycles are designed with the aim of obtaining the highest amount of energy possible. Since higher burnup values are reached, it is necessary to improve our disposal designs, traditionally based on the conservative assumption that they contain fresh fuel. The criticality calculations involved must consider burnup by making the most of the experimental and computational capabilities developed, respectively, to measure and predict the isotopic content of the spent nuclear fuel. These high burnup scenarios encourage a review of the computational tools to find out possible weaknesses in the nuclear data libraries, in the methodologies applied and their applicability range. Experimental measurements of the spent nuclear fuel provide the perfect framework to benchmark the most well-known and established codes, both in the industry and academic research activity. For the present paper, SCALE 6.0/TRITON and MONTEBURNS 2.0 have been chosen to follow the isotopic content of four samples irradiated in the Spanish Vandellós-II pressurized water reactor up to burnup values ranging from 40 GWd/MTU to 75 GWd/MTU. By comparison with the experimental data reported for these samples, we can probe the applicability of these codes to deal with high burnup problems. We have developed new computational tools within MONTENBURNS 2.0. They make possible to handle an irradiation history that includes geometrical and positional changes of the samples within the reactor core. This paper describes the irradiation scenario against which the mentioned codes and our capabilities are to be benchmarked.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accurate prediction of the spent nuclear fuel content is essential for its safe and optimized transportation, storage and management. This isotopic evolution can be predicted using powerful codes and methodologies throughout irradiation as well as cooling time periods. However, in order to have a realistic confidence level in the prediction of spent fuel isotopic content, it is desirable to determine how uncertainties affect isotopic prediction calculations by quantifying their associated uncertainties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four European fuel cycle scenarios involving transmutation options (in coherence with PATEROS and CPESFR EU projects) have been addressed from a point of view of resources utilization and economic estimates. Scenarios include: (i) the current fleet using Light Water Reactor (LWR) technology and open fuel cycle, (ii) full replacement of the initial fleet with Fast Reactors (FR) burning U?Pu MOX fuel, (iii) closed fuel cycle with Minor Actinide (MA) transmutation in a fraction of the FR fleet, and (iv) closed fuel cycle with MA transmutation in dedicated Accelerator Driven Systems (ADS). All scenarios consider an intermediate period of GEN-III+ LWR deployment and they extend for 200 years, looking for long term equilibrium mass flow achievement. The simulations were made using the TR_EVOL code, capable to assess the management of the nuclear mass streams in the scenario as well as economics for the estimation of the levelized cost of electricity (LCOE) and other costs. Results reveal that all scenarios are feasible according to nuclear resources demand (natural and depleted U, and Pu). Additionally, we have found as expected that the FR scenario reduces considerably the Pu inventory in repositories compared to the reference scenario. The elimination of the LWR MA legacy requires a maximum of 55% fraction (i.e., a peak value of 44 FR units) of the FR fleet dedicated to transmutation (MA in MOX fuel, homogeneous transmutation) or an average of 28 units of ADS plants (i.e., a peak value of 51 ADS units). Regarding the economic analysis, the main usefulness of the provided economic results is for relative comparison of scenarios and breakdown of LCOE contributors rather than provision of absolute values, as technological readiness levels are low for most of the advanced fuel cycle stages. The obtained estimations show an increase of LCOE ? averaged over the whole period ? with respect to the reference open cycle scenario of 20% for Pu management scenario and around 35% for both transmutation scenarios. The main contribution to LCOE is the capital costs of new facilities, quantified between 60% and 69% depending on the scenario. An uncertainty analysis is provided around assumed low and high values of processes and technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate control over the spent nuclear fuel content is essential for its safe and optimized transportation, storage and management. Consequently, the reactivity of spent fuel and its isotopic content must be accurately determined. Nowadays, to predict isotopic evolution throughout irradiation and decay periods is not a problem thanks to the development of powerful codes and methodologies. In order to have a realistic confidence level in the prediction of spent fuel isotopic content, it is desirable to determine how uncertainties in the basic nuclear data affect isotopic prediction calculations by quantifying their associated uncertainties

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main goals of Spanish Young Generation (JJNN) is to spread knowledge about nuclear energy, not only pointing out its advantages and its role in our society, but also trying to correct some of the ideas that are due to the biased information and to the lack of knowledge. With this goal in mind, lectures were given in several high schools, aimed at students ranging from 14 to 18 years old. This paper explains the experience accumulated during those talks and the conclusions that can be drawn, so as to better focus the communication about nuclear energy, especially the one aimed at a young public. In order to evaluate the degree of knowledge and information on a specific topic of a given group of individuals, statistical methods must be used. At the beginning of each lecture (and sometimes at the end, in order to evaluate the impact of the talk) the students were submitted to a short survey conducted by Spanish Young Generation. It consisted in eight questions, dealing with the relation between the main environmental issues (global warming, acid rain, radioactive waste…) and nuclear energy. The answers can be surprising, especially for professionals of the nuclear field who, since they are so familiar with this topic, often forget that this is just the case of a minority of people. A better knowledge of the degree of information of a given group enables to focus and personalize the communication. Another communication tool is the direct contact with students: it starts with their questions, which can then lead to a small debate. If the surveys inform about the topics they are unaware of, the direct exchange with them enables to find the most effective way to provide them the information. Of course, it depends a lot on the public attending the talk (age, background…) and on the debate following the talk: a good communication, adapted to the public, is necessary. Therefore, the outcome of the performed exercise is that Spanish teenagers have still a lack of knowledge about nuclear energy. We can learn that items that are evident for nuclear young professionals are unknown for high school teenagers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although studies of a number of parallel implementations of logic programming languages are now available, their results are difficult to interpret due to the multiplicity of factors involved, the effect of each of which is difficult to sepárate. In this paper we present the results of a high-level simulation study of or- and independent and-parallelism with a wide selection of Prolog programs that aims to determine the intrinsic amount of parallelism, independently of implementation factors, thus facilitating this separation. We expect this study will be instrumental in better understanding and comparing results from actual implementations, as shown by some examples provided in the paper. In addition, the paper examines some of the issues and tradeoffs associated with the combination of and- and or-parallelism and proposes reasonable solutions based on the simulation data obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most implementations of parallel logic programming rely on complex low-level machinery which is arguably difflcult to implement and modify. We explore an alternative approach aimed at taming that complexity by raising core parts of the implementation to the source language level for the particular case of and-parallelism. Therefore, we handle a signiflcant portion of the parallel implementation mechanism at the Prolog level with the help of a comparatively small number of concurrency-related primitives which take care of lower-level tasks such as locking, thread management, stack set management, etc. The approach does not eliminate altogether modiflcations to the abstract machine, but it does greatly simplify them and it also facilitates experimenting with different alternatives. We show how this approach allows implementing both restricted and unrestricted (i.e., non fork-join) parallelism. Preliminary experiments show that the amount of performance sacriflced is reasonable, although granularity control is required in some cases. Also, we observe that the availability of unrestricted parallelism contributes to better observed speedups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

inor actinides (MAs) transmutation is a main design objective of advanced nuclear systems such as generation IV Sodium Fast Reactors (SFRs). In advanced fuel cycles, MA contents in final high level waste packages are main contributors to short term heat production as well as to long-term radiotoxicity. Therefore, MA transmutation would have an impact on repository designs and would reduce the environment burden of nuclear energy. In order to predict such consequences Monte Carlo (MC) transport codes are used in reactor design tasks and they are important complements and references for routinely used deterministic computational tools. In this paper two promising Monte Carlo transport-coupled depletion codes, EVOLCODE and SERPENT, are used to examine the impact of MA burning strategies in a SFR core, 3600 MWth. The core concept proposal for MA loading in two configurations is the result of an optimization effort upon a preliminary reference design to reduce the reactivity insertion as a consequence of sodium voiding, one of the main concerns of this technology. The objective of this paper is double. Firstly, efficiencies of the two core configurations for MA transmutation are addressed and evaluated in terms of actinides mass changes and reactivity coefficients. Results are compared with those without MA loading. Secondly, a comparison of the two codes is provided. The discrepancies in the results are quantified and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spanish Young Generation in Nuclear (Jóvenes Nucleares, JJNN) is a non-profrt organization that depends on the Spanish Nuclear Society (Sociedad Nuclear Española, SNE).Since one of rts main goals is to spread the knowledge about nuclear power,severa! technical tours to facilities wrth an importan!role in the nuclear fuel cycle have been organized for the purpose ofleaming about the different stages of the Spanish tuel cycle. Spanish Young Generation in Nuclear had the opportunity to visit ENUSA Fuel Assembly Factory in Juzbado (Salamanca, Spain), Where it could be understood the front-end cycle which involves the uranium supply and storage, design and manufacturing of fuel bundles for European nuclear power plants. Alterwards, due to the tour of Almaraz NPP (PWR) and Santa María de Garoña NPP (BWR), rt could be comprehended how to obtain energy from this fuel in two different types of reactors.Furthermore,in these two plants, the facilities related to the back-end cycle could be toured. lt was possible to watch the Spent FuelPools, where the fuel bundles are stored under water until their activity is reduced enough to transport them to an Individual Temporary Storage Facility orto the Centralized Temporary Storage. Finally, a technical tour to ENSA Heavy Components Factory (ENSA) was accomplished, Where it could be experienced at first hand how different Nuclear Steam Supply System (NSSS) components and other nuclear elements, such as racks or shipping and storage casks for spent nuclear fuel, are manulactured. All these perlonned technical tours were a complete success thanks to a generous care and know-how of the wor1

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A “Collaborative Agreement” involving the collective participation of our students in their last year of our “Nuclear Engineering Master Degree Programme” for: “the review and capturing of selected spent fuel isotopic assay data sets to be included in the new SFCOMPO database"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate control over the spent nuclear fuel content is essential for its safe and optimized transportation, storage and management. Consequently, the reactivity of spent fuel and its isotopic content must be accurately determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determining as accurate as possible spent nuclear fuel isotopic content is gaining importance due to its safety and economic implications. Since nowadays higher burn ups are achievable through increasing initial enrichments, more efficient burn up strategies within the reactor cores and the extension of the irradiation periods, establishing and improving computation methodologies is mandatory in order to carry out reliable criticality and isotopic prediction calculations. Several codes (WIMSD5, SERPENT 1.1.7, SCALE 6.0, MONTEBURNS 2.0 and MCNP-ACAB) and methodologies are tested here and compared to consolidated benchmarks (OECD/NEA pin cell moderated with light water) with the purpose of validating them and reviewing the state of the isotopic prediction capabilities. These preliminary comparisons will suggest what can be generally expected of these codes when applied to real problems. In the present paper, SCALE 6.0 and MONTEBURNS 2.0 are used to model the same reported geometries, material compositions and burn up history of the Spanish Van de llós II reactor cycles 7-11 and to reproduce measured isotopies after irradiation and decay times. We analyze comparisons between measurements and each code results for several grades of geometrical modelization detail, using different libraries and cross-section treatment methodologies. The power and flux normalization method implemented in MONTEBURNS 2.0 is discussed and a new normalization strategy is developed to deal with the selected and similar problems, further options are included to reproduce temperature distributions of the materials within the fuel assemblies and it is introduced a new code to automate series of simulations and manage material information between them. In order to have a realistic confidence level in the prediction of spent fuel isotopic content, we have estimated uncertainties using our MCNP-ACAB system. This depletion code, which combines the neutron transport code MCNP and the inventory code ACAB, propagates the uncertainties in the nuclide inventory assessing the potential impact of uncertainties in the basic nuclear data: cross-section, decay data and fission yields

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study, through a concrete case, the feasibility of using a high-level, general-purpose logic language in the design and implementation of applications targeting wearable computers. The case study is a "sound spatializer" which, given real-time signáis for monaural audio and heading, generates stereo sound which appears to come from a position in space. The use of advanced compile-time transformations and optimizations made it possible to execute code written in a clear style without efñciency or architectural concerns on the target device, while meeting strict existing time and memory constraints. The final executable compares favorably with a similar implementation written in C. We believe that this case is representative of a wider class of common pervasive computing applications, and that the techniques we show here can be put to good use in a range of scenarios. This points to the possibility of applying high-level languages, with their associated flexibility, conciseness, ability to be automatically parallelized, sophisticated compile-time tools for analysis and verification, etc., to the embedded systems field without paying an unnecessary performance penalty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At present, in the University curricula in most countries, the decision theory and the mathematical models to aid decision making is not included, as in the graduate program like in Doctored and Master´s programs. In the Technical School of High Level Agronomic Engineers of the Technical University of Madrid (ETSIA-UPM), the need to offer to the future engineers training in a subject that could help them to take decisions in their profession was felt. Along the life, they will have to take a lot of decisions. Ones, will be important and others no. In the personal level, they will have to take several very important decisions, like the election of a career, professional work, or a couple, but in the professional field, the decision making is the main role of the Managers, Politicians and Leaders. They should be decision makers and will be paid for it. Therefore, nobody can understand that such a professional that is called to practice management responsibilities in the companies, does not take training in such an important matter. For it, in the year 2000, it was requested to the University Board to introduce in the curricula an optional qualified subject of the second cycle with 4,5 credits titled " Mathematical Methods for Making Decisions ". A program was elaborated, the didactic material prepared and programs as Maple, Lingo, Math Cad, etc. installed in several IT classrooms, where the course will be taught. In the course 2000-2001 this subject was offered with a great acceptance that exceeded the forecasts of capacity and had to be prepared more classrooms. This course in graduate program took place in the Department of Applied Mathematics to the Agronomic Engineering, as an extension of the credits dedicated to Mathematics in the career of Engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a new methodology is devised to obtain the fracture properties of nuclear fuel cladding in the hoop direction. The proposed method combines ring compression tests and a finite element method that includes a damage model based on cohesive crack theory, applied to unirradiated hydrogen-charged ZIRLOTM nuclear fuel cladding. Samples with hydrogen concentrations from 0 to 2000 ppm were tested at 20 �C. Agreement between the finite element simulations and the experimental results is excellent in all cases. The parameters of the cohesive crack model are obtained from the simulations, with the fracture energy and fracture toughness being calculated in turn. The evolution of fracture toughness in the hoop direction with the hydrogen concentration (up to 2000 ppm) is reported for the first time for ZIRLOTM cladding. Additionally, the fracture micromechanisms are examined as a function of the hydrogen concentration. In the as-received samples, the micromechanism is the nucleation, growth and coalescence of voids, whereas in the samples with 2000 ppm, a combination of cuasicleavage and plastic deformation, along with secondary microcracking is observed.