5 resultados para Illinois School for the Visually Impaired

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visually impaired people have many difficulties when traveling because it is impossible for them to detect obstacles that stand in their way. Bats instead of using the sight to detect these obstacles use a method based on ultrasounds, as their sense of hearing is much more developed than that of sight. The aim of the project is to design and build a device based on the method used by the bats to detect obstacles and transmit this information to people with vision problems to improve their skills. The method involves sending ultrasonic waves and analyzing the echoes produced when these waves collide with an obstacle. The sent signals are pulses and the information needed is the time elapsed from we send a pulse to receive the echo produced. The speed of sound is fixed within the same environment, so measuring the time it takes the wave to make the return trip, we can easily know the distance where the object is located. To build the device we have to design the necessary circuits, fabricate printed circuit boards and mount the components. We also have to design a program that would work within the digital part, which will be responsible for performing distance calculations and generate the signals with the information for the user. The circuits are the emitter and the receiver. The transmitter circuit is responsible for generating the signals that we will use. We use an ultrasonic transmitter which operates at 40 kHz so the sent pulses have to be modulated with this frequency. For this we generate a 40 kHz wave with an astable multivibrator formed by NAND gates and a train of pulses with a timer. The signal is the product of these two signals. The circuit of the receiver is a signal conditioner which transforms the signals received by the ultrasonic receiver in square pulses. The received signals have a 40 kHz carrier, low voltage and very different shapes. In the signal conditioner we will amplify the voltage to appropriate levels, eliminate the component of 40 kHz and make the shape of the pulses square to use them digitally. To simplify the design and manufacturing process in the digital part of the device we will use the Arduino platform. The pulses sent and received echoes enter through input pins with suitable voltage levels. In the Arduino, our program will poll these two signals storing the time when a pulse occurs. These time values are analyzed and used to generate an audible signal with the user information. This information is stored in the frequency of the signal, so that the generated signal frequency varies depending on the distance at which the objects are. RESUMEN Las personas con discapacidad visual tienen muchas dificultades a la hora de desplazarse ya que les es imposible poder detectar los obstáculos que se interpongan en su camino. Los murciélagos en vez de usar la vista para detectar estos obstáculos utilizan un método basado en ultrasonidos, ya que su sentido del oído está mucho más desarrollado que el de la vista. El objetivo del proyecto es diseñar y construir un dispositivo basado en el método usado por los murciélagos para detectar obstáculos y que pueda ser usado por las personas con problemas en la vista para mejorar sus capacidades. El método utilizado consiste en enviar ondas de ultrasonidos y analizar el eco producido cuando estas ondas chocan con algún obstáculo. Las señales enviadas tendrán forma de pulsos y la información necesaria es el tiempo transcurrido entre que enviamos un pulso y recibimos el eco producido. La velocidad del sonido es fija dentro de un mismo entorno, por lo que midiendo el tiempo que tarda la onda en hacer el viaje de ida y vuelta podemos fácilmente conocer la distancia a la que se encuentra el objeto. Para construir el dispositivo tendremos que diseñar los circuitos necesarios, fabricar las placas de circuito impreso y montar los componentes. También deberemos diseñar el programa que funcionara dentro de la parte digital, que será el encargado de realizar los cálculos de la distancia y de generar las señales con la información para el usuario. Los circuitos diseñados corresponden uno al emisor y otro al receptor. El circuito emisor es el encargado de generar las señales que vamos a emitir. Vamos a usar un emisor de ultrasonidos que funciona a 40 kHz por lo que los pulsos que enviemos van a tener que estar modulados con esta frecuencia. Para ello generamos una onda de 40 kHz mediante un multivibrador aestable formado por puertas NAND y un tren de pulsos con un timer. La señal enviada es el producto de estas dos señales. El circuito de la parte del receptor es un acondicionador de señal que transforma las señales recibidas por el receptor de ultrasonidos en pulsos cuadrados. Las señales recibidas tienen una portadora de 40 kHz para poder usarlas con el receptor de ultrasonidos, bajo voltaje y formas muy diversas. En el acondicionador de señal amplificaremos el voltaje a niveles adecuados además de eliminar la componente de 40 kHz y conseguir pulsos cuadrados que podamos usar de forma digital. Para simplificar el proceso de diseño y fabricación en la parte digital del dispositivo usaremos la plataforma Arduino. Las señales correspondientes el envío de los pulsos y a la recepción de los ecos entraran por pines de entrada después de haber adaptado los niveles de voltaje. En el Arduino, nuestro programa sondeara estas dos señales almacenando el tiempo en el que se produce un pulso. Estos valores de tiempo se analizan y se usan para generar una señal audible con la información para el usuario. Esta información ira almacenada en la frecuencia de la señal, por lo que la señal generada variará su frecuencia en función de la distancia a la que se encuentren los objetos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main goals of Spanish Young Generation (JJNN) is to spread knowledge about nuclear energy, not only pointing out its advantages and its role in our society, but also trying to correct some of the ideas that are due to the biased information and to the lack of knowledge. With this goal in mind, lectures were given in several high schools, aimed at students ranging from 14 to 18 years old. This paper explains the experience accumulated during those talks and the conclusions that can be drawn, so as to better focus the communication about nuclear energy, especially the one aimed at a young public. In order to evaluate the degree of knowledge and information on a specific topic of a given group of individuals, statistical methods must be used. At the beginning of each lecture (and sometimes at the end, in order to evaluate the impact of the talk) the students were submitted to a short survey conducted by Spanish Young Generation. It consisted in eight questions, dealing with the relation between the main environmental issues (global warming, acid rain, radioactive waste…) and nuclear energy. The answers can be surprising, especially for professionals of the nuclear field who, since they are so familiar with this topic, often forget that this is just the case of a minority of people. A better knowledge of the degree of information of a given group enables to focus and personalize the communication. Another communication tool is the direct contact with students: it starts with their questions, which can then lead to a small debate. If the surveys inform about the topics they are unaware of, the direct exchange with them enables to find the most effective way to provide them the information. Of course, it depends a lot on the public attending the talk (age, background…) and on the debate following the talk: a good communication, adapted to the public, is necessary. Therefore, the outcome of the performed exercise is that Spanish teenagers have still a lack of knowledge about nuclear energy. We can learn that items that are evident for nuclear young professionals are unknown for high school teenagers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theory is developed of an electrostatic probe in a fully-ionized plasma in the presence of a strong magnetic field. The ratio of electron Larmor radius to probe transverse dimension is assumed to be small. Poisson's equation, together with kinetic equations for ions and electrons are considered. An asymptotic perturbation method of multiple scales is used by considering the characteristic lengths appearing in the problem. The leading behavior of the solution is found. The results obtained appear to apply to weaker fields also, agreeing with the solutions known in the limit of no magnetic field. The range of potentials for wich results are presented is limited. The basic effects produced by the field are a depletion of the plasma near the probe and a non-monotonic potential surrounding the probe. The ion saturation current is not changed but changes appear in both the floating potential Vf and the slope of the current-voltage diagram at Vf. The transition region extends beyond the space potential Vs,at wich point the current is largely reduced. The diagram does not have an exponential form in this region as commonly assumed. There exists saturation in electron collection. The extent to which the plasma is disturbed is determined. A cylindrical probe has no solution because of a logarithmic singularity at infinity. Extensions of the theory are considered.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The third Training School of the Action took place in Vitoria-Gasteiz (Basque country, Spain) from 24th to 26th September 2014. Vitoria-Gateiz has experimented an important urban outgrowth in the last decade, mainly through the planning and development of two new neighborhoods, Zabalgana and Salburúa, situated at the eastern and western border of the city, by the Greenbelt. These new development are well-equipped and designed according to sustainability principles. Nevertheless, among the main problems they present is their over-dimensioned public space, which creates some areas lacking enough density and mix of uses. On the other hand it is very expensive for the municipality to maintain these public space with the high Vitorian urban standards for public space. The proposed solution for this problem is a strategy of "re-densification" through the insertion of new uses The debate has arisen about which are the most adequate uses to insert in order to get an increasing of urban vitality, specially considering that housing has reached its peak and that Vitoria-Gasteiz is well served with social and sport amenities. The main goal of the TS was to offer an opportunity for the reflection about how urban agriculture might be an optimal alternative for the re-qualifying of this over-dimensioned public space in the new neighbourhoods, especially considering it synergic potential as a tool for production, leisure and landscaping, including the possibility of energy crops within the limits of urban space. Continuity with rural and natural surrounding area through alternatives for urban fringe at the small scale is a relevant issue to be considered as well within the reflection. Taking Zabalgana neighbourhood as a practical field for experiment, the Training School is conceived as a practical and intensive design charrette to be held during a whole day after two days of local knowledge-deepening through field visits and presentations.