4 resultados para Identification with supervisor
em Universidad Politécnica de Madrid
Resumo:
Debido al futuro incierto de la mayor parte de los fumigantes edáficos usados actualmente en la Unión Europea, que pueden implicar riesgos para la salud humana/animal y el medio ambiente, es necesario desarrollar programas de manejo integrado para el control de plagas de cultivos. Estos programas se incluyen como obligatorios en el Reglamento (EC) No. 1107/2009. De acuerdo con este Reglamento, es obligatoria la evaluación del riesgo asociado al uso de productos fitosanitarios sobre los organismos edáficos no diana y sus funciones, además de llevar a cabo ensayos con diferentes especies indicadoras para obtener datos de toxicidad que puedan ser usados posteriormente en la evaluación de riesgo. Sin embargo, la baja representatividad de algunas de estas especies indicadoras en el área Mediterránea supone una gran limitación. En esta situación, el Panel Científico de Productos Fitosanitarios y sus Residuos de la Autoridad Europea en Seguridad Alimentaria (EFSA), ha señalado la necesidad de modificar los datos ecotoxicológicos requeridos para evaluar los efectos adversos de los productos fitosanitarios de una manera más integrada, incluyendo criterios funcionales y estructurales mediante organismos como bacterias, hongos, protozoos y nematodos. De este modo, la EFSA ha recomendado el uso de los nematodos en la evaluación de la funcionalidad y estructura del suelo. Los nematodos están globalmente distribuidos y son morfológicamente diversos; esto junto con su gran abundancia y diversidad de respuestas a las perturbaciones edáficas, los convierte en indicadores adecuados del estado del suelo. Puesto que los nematodos interaccionan con muchos otros organismos que participan en diferentes eslabones de la red trófica edáfica, jugando papeles importantes en procesos edáficos esenciales en los agroescosistemas, la diversidad de nematodos es, a menudo, usada como indicador biológico de los efectos de las prácticas agrícolas en el estado del suelo. En los últimos años, diferentes índices basados en la comunidad nematológica han facilitado la interpretación de datos complejos sobre la ecología del suelo. Los índices de la red trófica edáfica, basados en la abundancia de grupos funcionales definidos como grupos C-P y grupos tróficos, permiten la evaluación de la funcionalidad de la red trófica edáfica. Por otra parte, la dificultad en la identificación taxonómica de nematodos para explicar su uso limitado como indicadores ecológicos, es ampliamente discutida, y existe cierta controversia en cuanto a la eficacia de los diferentes métodos de identificación de nematodos. Se argumenta que la identificación morfológica es difícil y puede llevar mucho tiempo debido a la falta de expertos especializados, y se afirma que las técnicas moleculares pueden resolver algunas limitaciones de las técnicas morfológicas como la identificación de juveniles. Sin embargo, los métodos de identificación molecular tienen también limitaciones; la mayoría de las bases de datos de secuencias de ADN están fuertemente orientadas hacia los nematodos fitoparásitos, los cuales representan sólo una parte de la comunidad edáfica de nematodos, mientras que hay poca información disponible de nematodos de vida libre a pesar de representar la mayoría de los nematodos edáficos. Este trabajo se centra en el estudio de los efectos de fumigantes edáficos en la funcionalidad del suelo a través del uso de diferentes indicadores basados en la comunidad de nematodos, como los índices de la red trófica, índices de diversidad, abundancia de los taxones más relevantes etc. También se han analizado otros indicadores funcionales relacionados con la supresividad edáfica, el ciclo de nutrientes o la actividad de la microfauna del suelo. En el capítulo 1, la diversidad de nematodos estudiada en una explotación comercial de fresa y sus alrededores durante dos campañas consecutivas en el suroeste español, fue baja en los suelos fumigados con fumigantes químicos ambas campañas y, aunque se observó una recuperación a lo largo de la campaña en la zona tratada, los suelos fumigados mostraron una condición perturbada permanente. La comunidad de nematodos estuvo más asociada al ciclo de nutrientes en la zona sin cultivar que en los suelos cultivados, y se observó poca relación entre la biomasa de las plantas y la estructura de la comunidad de nematodos. Los surcos sin tratar dentro de la zona de cultivo funcionaron como reservorio tanto de nematodos fitoparásitos como beneficiosos; sin embargo estas diferencias entre los surcos y los lomos de cultivo no fueron suficientes para mantener la supresividad edáfica en los surcos. Los suelos tratados fueron menos supresivos que los suelos sin tratar, y se observaron correlaciones positivas entre la supresividad edáfica y la estructura de la red trófica edáfica y la diversidad de nematodos. En el capítulo 2, se evaluaron los efectos de dos pesticidas orgánicos con efecto nematicida y dos nematicidas convencionales sobre las propiedades físico químicas del suelo, la diversidad de nematodos y la biomasa de las plantas en condiciones experimentales en dos tipos de suelo: suelos agrícolas poco diversos y suelos provenientes de una zona de vegetación natural muy diversos. El mayor efecto se observó en el tratamiento con neem, el cual indujo un gran incremento en el número de dauerlarvas en los suelos pobres en nutrientes, mientras que el mismo tratamiento indujo un incremento de poblaciones de nematodos bacterívoros, más estables y menos oportunistas, en los suelos del pinar ricos en materia orgánica. En el capítulo 3, se comparó la eficacia de métodos moleculares (TRFLP, Terminal Restriction Fragment Length Polymorphism) y morfológicos (microscopía de alta resolución) para la identificación de diferentes comunidades denematodos de España e Irlanda. Se compararon estadísticamente las diferencias y similitudes en la diversidad de nematodos, otros indicadores ecológicos y de la red trófica edáfica. Las identificaciones mediante el uso de TRFLP sólo detectó un porcentaje de los taxones presentes en las muestras de suelo identificadas morfológicamente, y los nematodos omnívoros y predadores no fueron detectados molecularmente en nuestro estudio. Los índices calculados en base a los nematodos micróboros mostraron más similitud cuando se identificaron morfológica y molecularmente que los índices basados en grupos tróficos más altos. Nuestros resultados muestran que, al menos con la técnica usada en este estudio, la identificación morfológica de nematodos es una herramienta fiable y más precisa que la identificación molecular, puesto que en general se obtiene una mayor resolución en la identificación de nematodos. En el capítulo 4, se estudiaron también los efectos de los nematicidas químicos sobre la comunidad de nematodos y la biomasa de las plantas en condiciones experimentales de campo, donde se aplicaron en una rotación de cultivo judía-col durante un ciclo de cultivo. Se aplicaron dos tipos de enmiendas orgánicas con el objetivo de mitigar el efecto negativo de los productos fitosanitarios sobre la diversidad edáfica. El efecto de los nematicidas sobre las propiedades del suelo y sobre la comunidad de nematodos fue más agudo que el efecto de las enmiendas. La incorporación de los restos de cosecha al final del ciclo de cultivo de la judía tuvo un gran efecto sobre la comunidad de nematodos, y aunque el número total de nematodos incrementó al final del experimento, se observó una condición perturbada permanente de la red trófica edáfica a lo largo del experimento. ABSTRACT Due to the uncertain future of the soil fumigants most commonly used in the EU, that might involve risks for human/animal health and the environment, there is a need to develop new integrated pest management programs, included as mandatory in the Regulation (EC) No. 1107/2009, to control crop diseases. According to this Regulation, evaluating the risk associated to the use of the plant production products (PPP) on non-target soil fauna and their function, and developing assays with different indicator species to obtain toxicity data to be used in the risk evaluation is mandatory. However, the low representativeness of some of these indicator species in the Mediterranean area is a relevant limitation. In this situation, the Scientific Panel of Plant Protection Products and their Residues of the European Food Safety Authority (EFSA) has pointed out the necessity of modifying the ecotoxicological data set required to evaluate non-target effects of PPP in a more integrated way, including structural and functional endpoints with organism such as bacteria, fungi, protists and nematodes. Thus, EFSA has recommended the use of nematodes in the assessment of the functional and structural features of the soil. Nematodes are globally distributed and morphologically diverse, and due to their high abundance and diversity of responses to soil disturbance, they are suitable indicators of the soil condition. Since nematodes interact with many other organisms as participants in several links of the soil food web, playing important roles in essential soil processes in agroecosystems, nematode diversity is often used as a biological indicator of the effects of agricultural practices on soil condition. In the last years, various indices based on soil nematode assemblages, have facilitated the interpretation of complex soil ecological data. Soil food web indices based on the abundances of functional guilds defined by C-P groups and trophic groups, permit evaluating soil food web functioning. On the other hand, the difficulty of nematode taxonomical identification is commonly argued to explain their limited used as ecological indicators, and there is a certain controversy in terms of the efficacy of various nematode identification methods. It is argued that the morphological identification is difficult and time consuming due to the lack of specialist knowledge, and it is claimed that molecular techniques can solve some limitations of morphological techniques such as the identification of juveniles. Nevertheless, molecular identification methods are limited too, since most of the DNA-based databases are strongly oriented towards plant-parasitic nematodes that represent only a fraction of the soil nematode community, while there is little information available on free-living nematodes, which represent most soil nematodes. This work focuses on the study of the effects of soil fumigants on soil functioning through the use of different indicators based on soil nematode community as soil food web indices, diversity indices, the abundance of more relevant taxa etc. Other functional indicators related to soil suppressiveness, nutrient cycling, or the activity of soil microfauna have been also studied. In chapter 1, nematode diversity assessed in a commercial strawberry farm and its surroundings for two consecutive growing seasons in southern Spain, was low in fumigated soils with chemical pesticides throughout both seasons and, although yearly recovery occurred within the treated fields, fumigated soils showed a permanent perturbed condition. The nematode community was more closely associated to nutrient cycling in the non-cropped than in the cropped soils, and the link between plant biomass and nematode community structure was weak. Non-treated furrows within the treated fields were a reservoir of both beneficial and plant-parasitic nematodes, but such difference between furrows and beds was not enough to maintain more suppressive soil assemblages in the furrows. Treated soils were less suppressive than unmanaged soils, and there was a positive and significant correlation between soil suppressiveness and soil food web structure and diversity. In chapter 2, the effects of two organic pesticides with nematicide effect and two chemical nematicides on soil physicalchemical properties, soil nematode diversity and plant biomass in experimental conditions were assessed in two types of soils: low diversity soils from an agricultural farm, and high diversity soils from a natural vegetation area. The larger effect was observed on the neem treatment, which induced a large boost of dauer juveniles in the nutrient-depleted soil, while the same treatment induced the increase of more stable, less opportunistic, populations of generalist bacterivore nematodes in the pine forest soil, rich in organic matter. In chapter 3, comparison of the efficiency of molecular (TRFLP, Terminal Restriction Fragment Length Polymorphism) and morphological (microscopy at high magnification) identification methods was carried out in different nematode communities from five sites of different land uses in Spain and Ireland. Differences and similarities on nematode diversity and other ecological and soil food web indices assessed by both methods, were statistically compared. Molecular identification with TRFLP only detected a percentage of the taxa present in the soil samples identified morphologically, and omnivores and predators were not detected molecularly in our study. Indices involving microbial feeding nematodes were more similar between identification methods than indices involving higher trophic links. Our results show that, at least with the technique used in this study, identifying nematodes morphologically is a reliable and more precise identification tool than molecular identification, since a higher taxonomic resolution is in general obtained compared to TRFLP. In chapter 4, the effect of chemical nematicides on nematode community descriptors and plant biomass was also studied in field conditions in an experimental area in which dazomet and dimethyl disulfide was applied in a bean-cabbage rotation system for a single season. Organic amendments were incorporated into the soil with the aim of mitigate the negative effect of the pesticides on soil diversity. The effect of the nematicides was much more noticeable than the effect of the amendments on soil properties and nematode community descriptors. The incorporation of bean crop residues into the soil at the end of bean crop cycle affected soil nematode community descriptors to a great extent, and although total number of nematodes increased at the end of the experiment, a permanent perturbed soil food web condition was observed along the experiment.
Resumo:
This paper presents a dynamic LM adaptation based on the topic that has been identified on a speech segment. We use LSA and the given topic labels in the training dataset to obtain and use the topic models. We propose a dynamic language model adaptation to improve the recognition performance in "a two stages" AST system. The final stage makes use of the topic identification with two variants: the first on uses just the most probable topic and the other one depends on the relative distances of the topics that have been identified. We perform the adaptation of the LM as a linear interpolation between a background model and topic-based LM. The interpolation weight id dynamically adapted according to different parameters. The proposed method is evaluated on the Spanish partition of the EPPS speech database. We achieved a relative reduction in WER of 11.13% over the baseline system which uses a single blackground LM.
Resumo:
The boundary element method (BEM) has been applied successfully to many engineering problems during the last decades. Compared with domain type methods like the finite element method (FEM) or the finite difference method (FDM) the BEM can handle problems where the medium extends to infinity much easier than domain type methods as there is no need to develop special boundary conditions (quiet or absorbing boundaries) or infinite elements at the boundaries introduced to limit the domain studied. The determination of the dynamic stiffness of arbitrarily shaped footings is just one of these fields where the BEM has been the method of choice, especially in the 1980s. With the continuous development of computer technology and the available hardware equipment the size of the problems under study grew and, as the flop count for solving the resulting linear system of equations grows with the third power of the number of equations, there was a need for the development of iterative methods with better performance. In [1] the GMRES algorithm was presented which is now widely used for implementations of the collocation BEM. While the FEM results in sparsely populated coefficient matrices, the BEM leads, in general, to fully or densely populated ones, depending on the number of subregions, posing a serious memory problem even for todays computers. If the geometry of the problem permits the surface of the domain to be meshed with equally shaped elements a lot of the resulting coefficients will be calculated and stored repeatedly. The present paper shows how these unnecessary operations can be avoided reducing the calculation time as well as the storage requirement. To this end a similar coefficient identification algorithm (SCIA), has been developed and implemented in a program written in Fortran 90. The vertical dynamic stiffness of a single pile in layered soil has been chosen to test the performance of the implementation. The results obtained with the 3-d model may be compared with those obtained with an axisymmetric formulation which are considered to be the reference values as the mesh quality is much better. The entire 3D model comprises more than 35000 dofs being a soil region with 21168 dofs the biggest single region. Note that the memory necessary to store all coefficients of this single region is about 6.8 GB, an amount which is usually not available with personal computers. In the problem under study the interface zone between the two adjacent soil regions as well as the surface of the top layer may be meshed with equally sized elements. In this case the application of the SCIA leads to an important reduction in memory requirements. The maximum memory used during the calculation has been reduced to 1.2 GB. The application of the SCIA thus permits problems to be solved on personal computers which otherwise would require much more powerful hardware.
Resumo:
In this paper we propose a novel fast random search clustering (RSC) algorithm for mixing matrix identification in multiple input multiple output (MIMO) linear blind inverse problems with sparse inputs. The proposed approach is based on the clustering of the observations around the directions given by the columns of the mixing matrix that occurs typically for sparse inputs. Exploiting this fact, the RSC algorithm proceeds by parameterizing the mixing matrix using hyperspherical coordinates, randomly selecting candidate basis vectors (i.e. clustering directions) from the observations, and accepting or rejecting them according to a binary hypothesis test based on the Neyman–Pearson criterion. The RSC algorithm is not tailored to any specific distribution for the sources, can deal with an arbitrary number of inputs and outputs (thus solving the difficult under-determined problem), and is applicable to both instantaneous and convolutive mixtures. Extensive simulations for synthetic and real data with different number of inputs and outputs, data size, sparsity factors of the inputs and signal to noise ratios confirm the good performance of the proposed approach under moderate/high signal to noise ratios. RESUMEN. Método de separación ciega de fuentes para señales dispersas basado en la identificación de la matriz de mezcla mediante técnicas de "clustering" aleatorio.