7 resultados para INSTRUCTOR
em Universidad Politécnica de Madrid
Resumo:
The goal of this paper is to show the results of an on-going experience on teaching project management to grade students by following a development scheme of management related competencies on an individual basis. In order to achieve that goal, the students are organized in teams that must solve a problem and manage the development of a feasible solution to satisfy the needs of a client. The innovative component advocated in this paper is the formal introduction of negotiating and virtual team management aspects, as different teams from different universities at different locations and comprising students with different backgrounds must collaborate and compete amongst them. The different learning aspects are identified and the improvement levels are reflected in a rubric that has been designed ad hoc for this experience. Finally, the effort frameworks for the student and instructor have been established according to the requirements of the Bologna paradigms. This experience is developed through a software-based support system allowing blended learning for the theoretical and individual?s work aspects, blogs, wikis, etc., as well as project management tools based on WWW that allow the monitoring of not only the expected deliverables and the achievement of the goals but also the progress made on learning as established in the defined rubric
Resumo:
E-learning systems output a huge quantity of data on a learning process. However, it takes a lot of specialist human resources to manually process these data and generate an assessment report. Additionally, for formative assessment, the report should state the attainment level of the learning goals defined by the instructor. This paper describes the use of the granular linguistic model of a phenomenon (GLMP) to model the assessment of the learning process and implement the automated generation of an assessment report. GLMP is based on fuzzy logic and the computational theory of perceptions. This technique is useful for implementing complex assessment criteria using inference systems based on linguistic rules. Apart from the grade, the model also generates a detailed natural language progress report on the achieved proficiency level, based exclusively on the objective data gathered from correct and incorrect responses. This is illustrated by applying the model to the assessment of Dijkstra’s algorithm learning using a visual simulation-based graph algorithm learning environment, called GRAPHs
Resumo:
Objective. The influence of an exercise programme performed by healthy pregnant women on maternal glucose tolerance was studied. Study design. A physical activity (PA, land/aquatic activities) programme during the entire pregnancy (three sessions per week) was conducted by a qualified instructor. 83 healthy pregnant women were randomly assigned to either an exercise group (EG, n=40) or a control (CG, n=43) group. 50 g maternal glucose screen (MGS), maternal weight gain and several pregnancy outcomes were recorded. Results. Significant differences were found between study groups on the 50 g MGS. Values corresponding to the EG (103.8±20.4 mg/dl) were better than those of the CG (126.9±29.5 mg/dl), p=0.000. In addition, no differences in maternal weight gain and no cases of gestational diabetes in EG versus 3 in CG (7%) (p>0.05) were found. Conclusion. A moderate PA programme performed during pregnancy improves levels of maternal glucose tolerance.
Resumo:
Higher education students demand fast feedback about their assignments and the opportunity to repeat them in case they do in a wrong way. Here a computer based trainer for Signals and Systems students is presented. An application, that automatically generates and assesses thousands of numerically different versions of several Signals and Systems problems have been developed. This applet guides the students to find the solution and automatically assesses and grades the students proposed solution. The students can use the application to practice in solving several types of Signals and Systems basic problems. After selecting the problem type, the student introduces a seed and the application generates a numerical version of the selected problem. Then the application presents a sequence of questions that the students must solve and the application automatically assess their answers. After solving a given problem, the students can repeat the same numerical variation of the problem by introducing the same seed to the application. In this way, they can review their solution with the help of the hints given by the application for wrong solutions. This application can also be used as an automatic assessment tool by the instructor. When the assessment is made in a controlled environment (examination classroom or laboratory) the instructor can use the same seed for all students. Otherwise, different seeds can be assigned to different students and in this way they solve different numerical variation of the proposed problem, so cheating becomes an arduous task. Given a problem type, the mathematical or conceptual difficulty of the problem can vary depending on the numerical values of the parameters of the problem. The application permits to easily select groups of seeds that yield to numerical variations with similar mathematical or conceptual difficulty. This represents an advantage over a randomised task assignment where students are asked to solve tasks with different difficulty.
Resumo:
This work describes an experience with a methodology for learning based on competences in Linear Algebra for engineering students. The experience has been based in autonomous team work of students. DERIVE tutorials for Linear Algebra topics are provided to the students. They have to work with the tutorials as their homework. After, worksheets with exercises have been prepared to be solved by the students organized in teams, using DERIVE function previously defined in the tutorials. The students send to the instructor the solution of the proposed exercises and they fill a survey with their impressions about the following items: ease of use of the files, usefulness of the tutorials for understanding the mathematical topics and the time spent in the experience. As a final work, we have designed an activity directed to the interested students. They have to prepare a project, related with a real problem in Science and Engineering. The students are free to choose the topic and to develop it but they have to use DERIVE in the solution. Obviously they are guided by the instructor. Some examples of activities related with Orthogonal Transformations will be presented.
Resumo:
When used appropriately, self- and peer-assessment are very effective learning tools. In the present work, instructor formative assessment and feedback, self-assessment (SA), and peer-assessment (PA) have been compared. During the first part of a semester, the students followed a continuous formative assessment. Subsequently, they were divided into two subgroups based on similar performances. One subgroup performed SAs, and the other followedPAduring the last part of the course. The performances of the two groups in solving problems were compared. Results suggest that PA is a more effective learning tool than SA, and both are more effective than instructor formative assessment. However, a survey that was conducted at the end of the experiment showed higher student confidence in instructor assessment than in PA. The students recognized the usefulness of acting as peer assessors, but believed that SA helped them more than PA.
Resumo:
El concepto de algoritmo es básico en informática, por lo que es crucial que los alumnos profundicen en él desde el inicio de su formación. Por tanto, contar con una herramienta que guíe a los estudiantes en su aprendizaje puede suponer una gran ayuda en su formación. La mayoría de los autores coinciden en que, para determinar la eficacia de una herramienta de visualización de algoritmos, es esencial cómo se utiliza. Así, los estudiantes que participan activamente en la visualización superan claramente a los que la contemplan de forma pasiva. Por ello, pensamos que uno de los mejores ejercicios para un alumno consiste en simular la ejecución del algoritmo que desea aprender mediante el uso de una herramienta de visualización, i. e. consiste en realizar una simulación visual de dicho algoritmo. La primera parte de esta tesis presenta los resultados de una profunda investigación sobre las características que debe reunir una herramienta de ayuda al aprendizaje de algoritmos y conceptos matemáticos para optimizar su efectividad: el conjunto de especificaciones eMathTeacher, además de un entorno de aprendizaje que integra herramientas que las cumplen: GRAPHs. Hemos estudiado cuáles son las cualidades esenciales para potenciar la eficacia de un sistema e-learning de este tipo. Esto nos ha llevado a la definición del concepto eMathTeacher, que se ha materializado en el conjunto de especificaciones eMathTeacher. Una herramienta e-learning cumple las especificaciones eMathTeacher si actúa como un profesor virtual de matemáticas, i. e. si es una herramienta de autoevaluación que ayuda a los alumnos a aprender de forma activa y autónoma conceptos o algoritmos matemáticos, corrigiendo sus errores y proporcionando pistas para encontrar la respuesta correcta, pero sin dársela explícitamente. En estas herramientas, la simulación del algoritmo no continúa hasta que el usuario introduce la respuesta correcta. Para poder reunir en un único entorno una colección de herramientas que cumplan las especificaciones eMathTeacher hemos creado GRAPHs, un entorno ampliable, basado en simulación visual, diseñado para el aprendizaje activo e independiente de los algoritmos de grafos y creado para que en él se integren simuladores de diferentes algoritmos. Además de las opciones de creación y edición del grafo y la visualización de los cambios producidos en él durante la simulación, el entorno incluye corrección paso a paso, animación del pseudocódigo del algoritmo, preguntas emergentes, manejo de las estructuras de datos del algoritmo y creación de un log de interacción en XML. Otro problema que nos planteamos en este trabajo, por su importancia en el proceso de aprendizaje, es el de la evaluación formativa. El uso de ciertos entornos e-learning genera gran cantidad de datos que deben ser interpretados para llegar a una evaluación que no se limite a un recuento de errores. Esto incluye el establecimiento de relaciones entre los datos disponibles y la generación de descripciones lingüísticas que informen al alumno sobre la evolución de su aprendizaje. Hasta ahora sólo un experto humano era capaz de hacer este tipo de evaluación. Nuestro objetivo ha sido crear un modelo computacional que simule el razonamiento del profesor y genere un informe sobre la evolución del aprendizaje que especifique el nivel de logro de cada uno de los objetivos definidos por el profesor. Como resultado del trabajo realizado, la segunda parte de esta tesis presenta el modelo granular lingüístico de la evaluación del aprendizaje, capaz de modelizar la evaluación y generar automáticamente informes de evaluación formativa. Este modelo es una particularización del modelo granular lingüístico de un fenómeno (GLMP), en cuyo desarrollo y formalización colaboramos, basado en la lógica borrosa y en la teoría computacional de las percepciones. Esta técnica, que utiliza sistemas de inferencia basados en reglas lingüísticas y es capaz de implementar criterios de evaluación complejos, se ha aplicado a dos casos: la evaluación, basada en criterios, de logs de interacción generados por GRAPHs y de cuestionarios de Moodle. Como consecuencia, se han implementado, probado y utilizado en el aula sistemas expertos que evalúan ambos tipos de ejercicios. Además de la calificación numérica, los sistemas generan informes de evaluación, en lenguaje natural, sobre los niveles de competencia alcanzados, usando sólo datos objetivos de respuestas correctas e incorrectas. Además, se han desarrollado dos aplicaciones capaces de ser configuradas para implementar los sistemas expertos mencionados. Una procesa los archivos producidos por GRAPHs y la otra, integrable en Moodle, evalúa basándose en los resultados de los cuestionarios. ABSTRACT The concept of algorithm is one of the core subjects in computer science. It is extremely important, then, for students to get a good grasp of this concept from the very start of their training. In this respect, having a tool that helps and shepherds students through the process of learning this concept can make a huge difference to their instruction. Much has been written about how helpful algorithm visualization tools can be. Most authors agree that the most important part of the learning process is how students use the visualization tool. Learners who are actively involved in visualization consistently outperform other learners who view the algorithms passively. Therefore we think that one of the best exercises to learn an algorithm is for the user to simulate the algorithm execution while using a visualization tool, thus performing a visual algorithm simulation. The first part of this thesis presents the eMathTeacher set of requirements together with an eMathTeacher-compliant tool called GRAPHs. For some years, we have been developing a theory about what the key features of an effective e-learning system for teaching mathematical concepts and algorithms are. This led to the definition of eMathTeacher concept, which has materialized in the eMathTeacher set of requirements. An e-learning tool is eMathTeacher compliant if it works as a virtual math trainer. In other words, it has to be an on-line self-assessment tool that helps students to actively and autonomously learn math concepts or algorithms, correcting their mistakes and providing them with clues to find the right answer. In an eMathTeacher-compliant tool, algorithm simulation does not continue until the user enters the correct answer. GRAPHs is an extendible environment designed for active and independent visual simulation-based learning of graph algorithms, set up to integrate tools to help the user simulate the execution of different algorithms. Apart from the options of creating and editing the graph, and visualizing the changes made to the graph during simulation, the environment also includes step-by-step correction, algorithm pseudo-code animation, pop-up questions, data structure handling and XML-based interaction log creation features. On the other hand, assessment is a key part of any learning process. Through the use of e-learning environments huge amounts of data can be output about this process. Nevertheless, this information has to be interpreted and represented in a practical way to arrive at a sound assessment that is not confined to merely counting mistakes. This includes establishing relationships between the available data and also providing instructive linguistic descriptions about learning evolution. Additionally, formative assessment should specify the level of attainment of the learning goals defined by the instructor. Till now, only human experts were capable of making such assessments. While facing this problem, our goal has been to create a computational model that simulates the instructor’s reasoning and generates an enlightening learning evolution report in natural language. The second part of this thesis presents the granular linguistic model of learning assessment to model the assessment of the learning process and implement the automated generation of a formative assessment report. The model is a particularization of the granular linguistic model of a phenomenon (GLMP) paradigm, based on fuzzy logic and the computational theory of perceptions, to the assessment phenomenon. This technique, useful for implementing complex assessment criteria using inference systems based on linguistic rules, has been applied to two particular cases: the assessment of the interaction logs generated by GRAPHs and the criterion-based assessment of Moodle quizzes. As a consequence, several expert systems to assess different algorithm simulations and Moodle quizzes have been implemented, tested and used in the classroom. Apart from the grade, the designed expert systems also generate natural language progress reports on the achieved proficiency level, based exclusively on the objective data gathered from correct and incorrect responses. In addition, two applications, capable of being configured to implement the expert systems, have been developed. One is geared up to process the files output by GRAPHs and the other one is a Moodle plug-in set up to perform the assessment based on the quizzes results.