6 resultados para INGENIERÍA ELÉCTRICA

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

El presente artículo se analiza el peso del coste de la energía eléctrica en las cuentas de resultados de las empresas españolas y se realiza una reflexión sobre el mismo en comparación con Francia y el posible impacto del coste sobre la competitividad del país.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En el presente proyecto se realiza el diseño y cálculo de la instalación eléctrica y el cálculo de luminarias, de un edificio de oficinas y almacén de productos farmacéuticos. Este diseño se precisa para el correcto desarrollo de la actividad de la nave industrial objeto de la instalación. Mediante la utilización de programas informáticos se pretende diseñar una guía para agilizar los procesos de dimensionamiento y cálculo para este tipo de proyectos. Al contar estos programas con una normativa totalmente actualizada, también agilizan el proceso de adecuación a la norma. En el cálculo de luminarias se consigue un cálculo muy aproximado de la potencia requerida, además de asegurar las condiciones lumínicas necesarias. También se tiene un cálculo muy exacto del circuito eléctrico que es fácil modificar a futuras ampliaciones. ABSTRACT The project´s aim is to make the design and calculations of the electrical and lighting installations, for a pharmaceutical warehouse. This design is necessary to ensure proper operational activity of the industrial warehouse, subject to the installation. By means of computer programs, it is intended to design a guide in order to speed up the processes of calculations and sizing of the electric wiring for this type of project. These programs are also fully updated, and therefore, the processes of adaptation to the legislation and regulations are made easier. In the calculation of the lighting, the software achieves a close approximation of the required power as well as ensuring the necessary light conditions. With this software we also achieve a very accurate calculation of the electrical circuit that is easy to modify to future expansions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los cortes de alimentación eléctrica del pasado verano han enfrentado a grandes masas de población con la estupefacción que se siente si hay accidentes en sistemas cuya fiabilidad es tan grande que el uso consuetudinario nos ha acostumbrado a indignarnos si la probabilidad de fallo se convierte en certeza y descubrimos que esa fiabilidad no es infinita. Quiero decir con ello que hemos ido incorporando a nuestros hábitos las ventajas que produce el uso de nuevas aplicaciones de los avances científicos y técnicos que la ingeniería, siguiendo su tradición de progreso continuo y protagonismo público nulo, ha ido poniendo a nuestra disposición y, como pasa siempre, solo valoramos lo que damos por descontado que tenemos cuando dejamos de poseerlo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El desarrollo del presente trabajo sigue, tanto una línea cronológica de las tareas realizadas, como una lógica, en la que se parte de un conocimiento mínimo de los sistemas espaciales hasta llegar al diseño completo de un Módulo de Cálculo de Potencia Eléctrica de un satélite para su aplicación en una instalación de diseño concurrente o CDF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Las consecuencias ambientales, sociales y económicas que conlleva el cambio climático, enfatizan la creciente preocupación por desarrollar estrategias, medidas y acciones de prevención, adaptación y mitigación del mismo. La aplicación de buenas prácticas integradas en el modelo de gestión de las organizaciones bajo los criterios de responsabilidad social y sostenibilidad permite: tener un mayor control de riesgos, identificar nuevas oportunidades, mejorar relaciones con los grupos de interés, la reputación corporativa y el rendimiento económico. Desde el Equipo Directivo de la Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural (E.T.S.I.M.F.M.N.) se traza el proyecto Responsables Sostenibles Universitarios que trabaja en los ámbitos de la responsabilidad social universitaria y el desarrollo sostenible. En este sentido, se ha promovido la elaboración de este Proyecto Fin de Carrera (PFC) con el que se han logrado sus objetivos principales: 1. La cuantificación de la Huella de Carbono (HC) de 2013 de la E.T.S.I.M.F.M.N. con la aplicación de la Norma ISO 14064 y el Informe Técnico 14069, así como el análisis de la evolución de este indicador en el periodo 2011-2013. 2. Un plan para la gestión de las emisiones de GEI (GEGEI) que se puede integrar en la estrategia de sostenibilidad de la E.T.S.I.M.F.M.N. El plan de GEGEI proporciona un método para que la Escuela aborde de manera sistemática asuntos relevantes en temas sociales, ambientales y económicos relacionados con los GEI. En consecuencia, y como resultado de este PFC, se han alcanzado los siguientes objetivos generales: 1) identificar y analizar el riesgo asociado a los GEI de la Escuela; 2) realizar una evaluación de oportunidades, identificando las actuaciones que optimizan los recursos existentes, generan ahorros económicos, evitan emisiones de GEI y crean valor en el ámbito de la mejora de la identidad, imagen y reputación corporativa; 3) analizar el modelo organizacional de la Escuela y proponer los objetivos, las directrices, los procedimientos, las responsabilidades y los roles en la GEGEI del centro universitario y 4) elaborar la denominada matriz de GEGEI, con identificación de las áreas de mejora continua de procesos, las secciones de la Escuela que se ocupan de dichas áreas y las actuaciones específicas encaminadas a alcanzar los objetivos propuestos en el plan de GEGEI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uno de los principales retos de la sociedad actual es la evolución de sectores como el energético y el de la automoción a un modelo sostenible, responsable con el medio ambiente y con la salud de los ciudadanos. Una de las posibles alternativas, es la célula de combustible de hidrógeno, que transforma la energía química del combustible (hidrógeno) en corriente continua de forma limpia y eficiente. De entre todos los tipos de célula, gana especial relevancia la célula de membrana polimérica (PEM), que por sus características de peso, temperatura de trabajo y simplicidad; se presenta como una gran alternativa para el sector de la automoción entre otros. Por ello, el objetivo de este trabajo es ahondar en el conocimiento de la célula de combustible PEM. Se estudiarán los fundamentos teóricos que permitan comprender su funcionamiento, el papel de cada uno de los elementos de la célula y cómo varían sus características el funcionamiento general de la misma. También se estudiará la caracterización eléctrica, por su papel crucial en la evaluación del desempeño de la célula y para la comparación de modificaciones introducidas en ella. Además, se realizará una aplicación práctica en colaboración con los proyectos de fin de máster y doctorado de otros estudiantes del Politécnico de Milán, para implementar las técnicas aprendidas de caracterización eléctrica en una célula trabajando con diferentes tipos de láminas de difusión gaseosa (GDL y GDM) preparadas por estudiantes. Los resultados de la caracterización, permitirán analizar las virtudes de dos modificaciones en la composición clásica de la célula, con el fin de mejorar la gestión del agua que se produce en la zona catódica durante la reacción, disminuyendo los problemas de difusión a altas densidades de corriente y la consiguiente pérdida de potencial en la célula. Las dos modificaciones son: la inclusión de una lámina de difusión microporosa (MPL) a la lámina macroporosa habitual (GDL), y el uso de diversos polímeros con mejores propiedades hidrófobas en el tratamiento de dichas láminas de difusión. La célula de combustible es un sistema de conversión de energía electroquímico, en el que se trasforma de forma directa, energía química en energía eléctrica de corriente continua. En el catalizador de platino del ánodo se produce la descomposición de los átomos de hidrógeno. Los protones resultantes viajarán a través de la membrana de conducción protónica (que hace las veces de electrolito y supone el alma de la célula PEM) hasta el cátodo. Los electrones, en cambio, alcanzarán el cátodo a través de un circuito externo produciendo trabajo. Una vez ambas especies se encuentran en el cátodo, y junto con el oxígeno que sirve como oxidante, se completa la reacción, produciéndose agua. El estudio termodinámico de la reacción que se produce en la célula nos permite calcular el trabajo eléctrico teórico producido por el movimiento de cargas a través del circuito externo, y con él, una expresión del potencial teórico que presentará la célula, que variará con la temperatura y la presión; Para una temperatura de 25°C, este potencial teórico es de 1.23 V, sin embargo, el potencial de la célula en funcionamiento nunca presenta este valor. El alejamiento del comportamiento teórico se debe, principalmente, a tres tipos de pérdidas bien diferenciadas:  Pérdidas de activación: El potencial teórico representa la tensión de equilibrio, para la que no se produce un intercambio neto de corriente. Por tanto, la diferencia de potencial entre el ánodo y el cátodo debe alejarse del valor teórico para obtener una corriente neta a través del circuito externo. Esta diferencia con el potencial teórico se denomina polarización de activación, y conlleva una pérdida de tensión en la célula. Así pues estas pérdidas tienen su origen en la cinética de la reacción electroquímica.  Pérdidas óhmicas: Es una suma de las resistencias eléctricas en los elementos conductores, la resistencia en la membrana electrolítica a la conducción iónica y las resistencias de contacto.  Pérdidas por concentración: Estas pérdidas se producen cuando los gases reactivos en el área activa son consumidos en un tiempo menor del necesario para ser repuestos. Este fenómeno es crítico a altas densidades de corriente, cuando los gases reactivos son consumidos con gran velocidad, por lo que el descenso de concentración de reactivos en los electrodos puede provocar una caída súbita de la tensión de la célula. La densidad de corriente para la cual se produce esta caída de potencial en unas condiciones determinadas se denomina densidad límite de corriente. Así pues, estas pérdidas tienen su origen en los límites de difusión de las especies reactivas a través de la célula. Además de la membrana electrolítica y el catalizador, en la célula de combustible podemos encontrar como principales componentes los platos bipolares, encargados de conectar la célula eléctricamente con el exterior y de introducir los gases reactivos a través de sus conductos; y las láminas difusivas, que conectan eléctricamente el catalizador con los platos bipolares y sirven para distribuir los gases reactivos de forma que lleguen a todo el área activa, y para evacuar el exceso de agua que se acumula en el área activa.La lámina difusiva, más conocida como GDL, será el argumento principal de nuestro estudio. Está conformada por un tejido de fibra de carbono macroporosa, que asegure el contacto eléctrico entre el catalizador y el plato bipolar, y es tratada con polímeros para proporcionarle propiedades hidrófobas que le ayuden en la evacuación de agua. La evacuación del agua es tan importante, especialmente en el cátodo, porque de lo contrario, la cantidad de agua generada por la reacción electroquímica, sumada a la humedad que portan los gases, puede provocar inundaciones en la zona activa del electrodo. Debido a las inundaciones, el agua obstruye los poros del GDL, dificultando la difusión de especies gaseosas y aumentando las pérdidas por concentración. Por otra parte, si demasiada agua se evacúa del electrodo, se puede producir un aumento de las pérdidas óhmicas, ya que la conductividad protónica de la membrana polimérica, es directamente proporcional a su nivel de humidificación. Con el fin de mejorar la gestión del agua de la célula de combustible, se ha añadido una capa microporosa denominada MPL al lado activo del GDL. Esta capa, constituida por una mezcla de negro de carbón con el polímero hidrófobo como aglutinante, otorga al GDL un mejor acabado superficial que reduce la resistencia de contacto con el electrodo, además la reducción del tamaño de las gotas de agua al pasar por el MPL mejora la difusión gaseosa por la disminución de obstrucciones en el GDL. Es importante tener cuidado en los tratamientos de hidrofobización de estos dos elementos, ya que, cantidades excesivas de polímero hidrófobo podrían reducir demasiado el tamaño de los poros, además de aumentar las pérdidas resistivas por su marcado carácter dieléctrico. Para el correcto análisis del funcionamiento de una célula de combustible, la herramienta fundamental es su caracterización eléctrica a partir de la curva de polarización. Esta curva representa la evolución del potencial de la célula respecto de la densidad de corriente, y su forma viene determinada principalmente por la contribución de las tres pérdidas mencionadas anteriormente. Junto con la curva de polarización, en ocasiones se presenta la curva de densidad de potencia, que se obtiene a partir de la misma. De forma complementaria a la curva de polarización, se puede realizar el estudio del circuito equivalente de la célula de combustible. Este consiste en un circuito eléctrico sencillo, que simula las caídas de potencial en la célula a través de elementos como resistencias y capacitancias. Estos elementos representas pérdidas y limitaciones en los procesos químicos y físicos en la célula. Para la obtención de este circuito equivalente, se realiza una espectroscopia de impedancia electroquímica (en adelante EIS), que consiste en la identificación de los diferentes elementos a partir de los espectros de impedancia, resultantes de introducir señales de corriente alternas sinusoidales de frecuencia variable en la célula y observar la respuesta en la tensión. En la siguiente imagen se puede observar un ejemplo de la identificación de los parámetros del circuito equivalente en un espectro de impedancia. Al final del trabajo, se han realizado dos aplicaciones prácticas para comprobar la influencia de las características hidrófobas y morfológicas de los medios difusores en la gestión del agua en el cátodo y, por tanto, en el resultado eléctrico de la célula; y como aplicación práctica de las técnicas de construcción y análisis de las curvas de polarización y potencia y de la espectroscopia de impedancia electroquímica. El primer estudio práctico ha consistido en comprobar los beneficios de la inclusión de un MPL al GDL. Para ello se han caracterizado células funcionando con GDL y GDM (GDL+MPL) tratados con dos tipos diferentes de polímeros, PTFE y PFPE. Además se han realizado las pruebas para diferentes condiciones de funcionamiento, a saber, temperaturas de 60 y 80°C y niveles de humidificación relativa de los gases reactivos de 80%-60% y 80%- 100% (A-C). Se ha comprobado con las curvas de polarización y potencia, cómo la inclusión de un MPL en el lado activo del GDL reporta una mejora del funcionamiento de trabajo en todas las condiciones estudiadas. Esta mejora se hace más patente para altas densidades de corriente, cuando la gestión del agua resulta más crítica, y a bajas temperaturas ya que un menor porcentaje del agua producida se encuentra en estado de vapor, produciéndose inundaciones con mayor facilidad. El segundo estudio realizado trata de la influencia del agente hidrofobizante utilizado en los GDMs. Se pretende comprobar si algún otro polímero de los estudiados, mejora las prestaciones del comúnmente utilizado PTFE. Para ello se han caracterizado células trabajando en diferentes condiciones de trabajo (análogas a las del primer estudio) con GDMs tratados con PTFE, PFPE, FEP y PFA. Tras el análisis de las curvas de polarización y potencia, se observa un gran comportamiento del FEP para todas las condiciones de trabajo, aumentando el potencial de la célula para cada densidad de corriente respecto al PTFE y retrasando la densidad de corriente límite. El PFPE también demuestra un gran aumento del potencial y la densidad de potencia de la célula, aunque presenta mayores problemas de difusión a altas densidades de corriente. Los resultados del PFA evidencian sus problemas en la gestión del agua a altas densidades de corriente, especialmente para altas temperaturas. El análisis de los espectros de impedancia obtenidos con la EIS confirma los resultados de las curvas de polarización y evidencian que la mejor alternativa al PTFE para el tratamiento del GDM es el FEP, que por sus mejores características hidrófobas reduce las pérdidas por concentración con una mejor gestión del agua en el cátodo.