5 resultados para INCOMPLETE-DATA
em Universidad Politécnica de Madrid
Resumo:
A new version of the TomoRebuild data reduction software package is presented, for the reconstruction of scanning transmission ion microscopy tomography (STIMT) and particle induced X-ray emission tomography (PIXET) images. First, we present a state of the art of the reconstruction codes available for ion beam microtomography. The algorithm proposed here brings several advantages. It is a portable, multi-platform code, designed in C++ with well-separated classes for easier use and evolution. Data reduction is separated in different steps and the intermediate results may be checked if necessary. Although no additional graphic library or numerical tool is required to run the program as a command line, a user friendly interface was designed in Java, as an ImageJ plugin. All experimental and reconstruction parameters may be entered either through this plugin or directly in text format files. A simple standard format is proposed for the input of experimental data. Optional graphic applications using the ROOT interface may be used separately to display and fit energy spectra. Regarding the reconstruction process, the filtered backprojection (FBP) algorithm, already present in the previous version of the code, was optimized so that it is about 10 times as fast. In addition, Maximum Likelihood Expectation Maximization (MLEM) and its accelerated version Ordered Subsets Expectation Maximization (OSEM) algorithms were implemented. A detailed user guide in English is available. A reconstruction example of experimental data from a biological sample is given. It shows the capability of the code to reduce noise in the sinograms and to deal with incomplete data, which puts a new perspective on tomography using low number of projections or limited angle.
Resumo:
In tunnel construction, as in every engineering work, it is usual the decision making, with incomplete data. Nevertheless, consciously or not, the builder weighs the risks (even if this is done subjectively) so that he can offer a cost. The objective of this paper is to recall the existence of a methodology to treat the uncertainties in the data so that it is possible to see their effect on the output of the computational model used and then to estimate the failure probability or the safety margin of a structure. In this scheme it is possible to include the subjective knowledge on the statistical properties of the random variables and, using a numerical model consistent with the degree of complexity appropiate to the problem at hand, to make rationally based decisions. As will be shown with the method it is possible to quantify the relative importance of the random variables and, in addition, it can be used, under certain conditions, to solve the inverse problem. It is then a method very well suited both to the project and to the control phases of tunnel construction.
Resumo:
En esta Tesis Doctoral se emplean y desarrollan Métodos Bayesianos para su aplicación en análisis geotécnicos habituales, con un énfasis particular en (i) la valoración y selección de modelos geotécnicos basados en correlaciones empíricas; en (ii) el desarrollo de predicciones acerca de los resultados esperados en modelos geotécnicos complejos. Se llevan a cabo diferentes aplicaciones a problemas geotécnicos, como es el caso de: (1) En el caso de rocas intactas, se presenta un método Bayesiano para la evaluación de modelos que permiten estimar el módulo de Young a partir de la resistencia a compresión simple (UCS). La metodología desarrollada suministra estimaciones de las incertidumbres de los parámetros y predicciones y es capaz de diferenciar entre las diferentes fuentes de error. Se desarrollan modelos "específicos de roca" para los tipos de roca más comunes y se muestra cómo se pueden "actualizar" esos modelos "iniciales" para incorporar, cuando se encuentra disponible, la nueva información específica del proyecto, reduciendo las incertidumbres del modelo y mejorando sus capacidades predictivas. (2) Para macizos rocosos, se presenta una metodología, fundamentada en un criterio de selección de modelos, que permite determinar el modelo más apropiado, entre un conjunto de candidatos, para estimar el módulo de deformación de un macizo rocoso a partir de un conjunto de datos observados. Una vez que se ha seleccionado el modelo más apropiado, se emplea un método Bayesiano para obtener distribuciones predictivas de los módulos de deformación de macizos rocosos y para actualizarlos con la nueva información específica del proyecto. Este método Bayesiano de actualización puede reducir significativamente la incertidumbre asociada a la predicción, y por lo tanto, afectar las estimaciones que se hagan de la probabilidad de fallo, lo cual es de un interés significativo para los diseños de mecánica de rocas basados en fiabilidad. (3) En las primeras etapas de los diseños de mecánica de rocas, la información acerca de los parámetros geomecánicos y geométricos, las tensiones in-situ o los parámetros de sostenimiento, es, a menudo, escasa o incompleta. Esto plantea dificultades para aplicar las correlaciones empíricas tradicionales que no pueden trabajar con información incompleta para realizar predicciones. Por lo tanto, se propone la utilización de una Red Bayesiana para trabajar con información incompleta y, en particular, se desarrolla un clasificador Naïve Bayes para predecir la probabilidad de ocurrencia de grandes deformaciones (squeezing) en un túnel a partir de cinco parámetros de entrada habitualmente disponibles, al menos parcialmente, en la etapa de diseño. This dissertation employs and develops Bayesian methods to be used in typical geotechnical analyses, with a particular emphasis on (i) the assessment and selection of geotechnical models based on empirical correlations; on (ii) the development of probabilistic predictions of outcomes expected for complex geotechnical models. Examples of application to geotechnical problems are developed, as follows: (1) For intact rocks, we present a Bayesian framework for model assessment to estimate the Young’s moduli based on their UCS. Our approach provides uncertainty estimates of parameters and predictions, and can differentiate among the sources of error. We develop ‘rock-specific’ models for common rock types, and illustrate that such ‘initial’ models can be ‘updated’ to incorporate new project-specific information as it becomes available, reducing model uncertainties and improving their predictive capabilities. (2) For rock masses, we present an approach, based on model selection criteria to select the most appropriate model, among a set of candidate models, to estimate the deformation modulus of a rock mass, given a set of observed data. Once the most appropriate model is selected, a Bayesian framework is employed to develop predictive distributions of the deformation moduli of rock masses, and to update them with new project-specific data. Such Bayesian updating approach can significantly reduce the associated predictive uncertainty, and therefore, affect our computed estimates of probability of failure, which is of significant interest to reliability-based rock engineering design. (3) In the preliminary design stage of rock engineering, the information about geomechanical and geometrical parameters, in situ stress or support parameters is often scarce or incomplete. This poses difficulties in applying traditional empirical correlations that cannot deal with incomplete data to make predictions. Therefore, we propose the use of Bayesian Networks to deal with incomplete data and, in particular, a Naïve Bayes classifier is developed to predict the probability of occurrence of tunnel squeezing based on five input parameters that are commonly available, at least partially, at design stages.
Resumo:
There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson’s fuzzy min-max neural networks where the input variables for learning and classification are just numerical. The proposed method extends the input to categorical variables by introducing new fuzzy sets, a new operation and a new architecture. The procedure is tested and compared with others using opinion poll data.
Resumo:
Fission product yields are fundamental parameters for several nuclear engineering calculations and in particular for burn-up/activation problems. The impact of their uncertainties was widely studied in the past and valuations were released, although still incomplete. Recently, the nuclear community expressed the need for full fission yield covariance matrices to produce inventory calculation results that take into account the complete uncertainty data. In this work, we studied and applied a Bayesian/generalised least-squares method for covariance generation, and compared the generated uncertainties to the original data stored in the JEFF-3.1.2 library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235U. Calculations were carried out using different codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the library. The uncertainty quantification was performed with the Monte Carlo sampling technique. Indeed, correlations between fission yields strongly affect the statistics of decay heat. Introduction Nowadays, any engineering calculation performed in the nuclear field should be accompanied by an uncertainty analysis. In such an analysis, different sources of uncertainties are taken into account. Works such as those performed under the UAM project (Ivanov, et al., 2013) treat nuclear data as a source of uncertainty, in particular cross-section data for which uncertainties given in the form of covariance matrices are already provided in the major nuclear data libraries. Meanwhile, fission yield uncertainties were often neglected or treated shallowly, because their effects were considered of second order compared to cross-sections (Garcia-Herranz, et al., 2010). However, the Working Party on International Nuclear Data Evaluation Co-operation (WPEC)