2 resultados para IMPULSE-APPROXIMATION CALCULATIONS

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The relativistic distorted-wave impulse approximation is used to describe the 3He(e, e′ p)2H process. We describe the 3He nucleus within the adiabatic hyperspherical expansion method with realistic nucleon-nucleon interactions. The overlap between the 3He and the deuteron wave functions can be accurately computed from a three-body calculation. The nucleons are described by solutions of the Dirac equation with scalar and vector (S–V) potentials. The wave function of the outgoing proton is obtained by solving the Dirac equation with a S–V optical potential fitted to elastic proton scattering data on the residual nucleus. Within this theoretical framework, we compute the cross section of the reaction and other observables like the transverse-longitudinal asymmetry, and compare them with the available experimental data measured at JLab.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Performing three-dimensional pin-by-pin full core calculations based on an improved solution of the multi-group diffusion equation is an affordable option nowadays to compute accurate local safety parameters for light water reactors. Since a transport approximation is solved, appropriate correction factors, such as interface discontinuity factors, are required to nearly reproduce the fully heterogeneous transport solution. Calculating exact pin-by-pin discontinuity factors requires the knowledge of the heterogeneous neutron flux distribution, which depends on the boundary conditions of the pin-cell as well as the local variables along the nuclear reactor operation. As a consequence, it is impractical to compute them for each possible configuration; however, inaccurate correction factors are one major source of error in core analysis when using multi-group diffusion theory. An alternative to generate accurate pin-by-pin interface discontinuity factors is to build a functional-fitting that allows incorporating the environment dependence in the computed values. This paper suggests a methodology to consider the neighborhood effect based on the Analytic Coarse-Mesh Finite Difference method for the multi-group diffusion equation. It has been applied to both definitions of interface discontinuity factors, the one based on the Generalized Equivalence Theory and the one based on Black-Box Homogenization, and for different few energy groups structures. Conclusions are drawn over the optimal functional-fitting and demonstrative results are obtained with the multi-group pin-by-pin diffusion code COBAYA3 for representative PWR configurations.