4 resultados para Hydrothermal scheduling problems

em Universidad Politécnica de Madrid


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Los problemas de programación de tareas son muy importantes en el mundo actual. Se puede decir que se presentan en todos los fundamentos de la industria moderna, de ahí la importancia de que estos sean óptimos, de forma que se puedan ahorrar recursos que estén asociados al problema. La programación adecuada de trabajos en procesos de manufactura, constituye un importante problema que se plantea dentro de la producción en muchas empresas. El orden en que estos son procesados, no resulta indiferente, sino que determinará algún parámetro de interés, cuyos valores convendrá optimizar en la medida de lo posible. Así podrá verse afectado el coste total de ejecución de los trabajos, el tiempo necesario para concluirlos o el stock de productos en curso que será generado. Esto conduce de forma directa al problema de determinar cuál será el orden más adecuado para llevar a cabo los trabajos con vista a optimizar algunos de los anteriores parámetros u otros similares. Debido a las limitaciones de las técnicas de optimización convencionales, en la presente tesis se presenta una metaheurística basada en un Algoritmo Genético Simple (Simple Genetic Algorithm, SGA), para resolver problemas de programación de tipo flujo general (Job Shop Scheduling, JSS) y flujo regular (Flow Shop Scheduling, FSS), que están presentes en un taller con tecnología de mecanizado con el objetivo de optimizar varias medidas de desempeño en un plan de trabajo. La aportación principal de esta tesis, es un modelo matemático para medir el consumo de energía, como criterio para la optimización, de las máquinas que intervienen en la ejecución de un plan de trabajo. Se propone además, un método para mejorar el rendimiento en la búsqueda de las soluciones encontradas, por parte del Algoritmo Genético Simple, basado en el aprovechamiento del tiempo ocioso. ABSTRACT The scheduling problems are very important in today's world. It can be said to be present in all the basics of modern industry, hence the importance that these are optimal, so that they can save resources that are associated with the problem. The appropriate programming jobs in manufacturing processes is an important problem that arises in production in many companies. The order in which they are processed, it is immaterial, but shall determine a parameter of interest, whose values agree optimize the possible. This may be affected the total cost of execution of work, the time needed to complete them or the stock of work in progress that will be generated. This leads directly to the problem of determining what the most appropriate order to carry out the work in order to maximize some of the above parameters or other similar. Due to the limitations of conventional optimization techniques, in this work present a metaheuristic based on a Simple Genetic Algorithm (Simple Genetic Algorithm, SGA) to solve programming problems overall flow rate (Job Shop Scheduling, JSS) and regular flow (Flow Shop Scheduling, FSS), which are present in a workshop with machining technology in order to optimize various performance measures in a plan. The main contribution of this thesis is a mathematical model to measure the energy consumption as a criterion for the optimization of the machines involved in the implementation of a work plan. It also proposes a method to improve performance in finding the solutions, by the simple genetic algorithm, based on the use of idle time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The operating theatres are the engine of the hospitals; proper management of the operating rooms and its staff represents a great challenge for managers and its results impact directly in the budget of the hospital. This work presents a MILP model for the efficient schedule of multiple surgeries in Operating Rooms (ORs) during a working day. This model considers multiple surgeons and ORs and different types of surgeries. Stochastic strategies are also implemented for taking into account the uncertain in surgery durations (pre-incision, incision, post-incision times). In addition, a heuristic-based methods and a MILP decomposition approach is proposed for solving large-scale ORs scheduling problems in computational efficient way. All these computer-aided strategies has been implemented in AIMMS, as an advanced modeling and optimization software, developing a user friendly solution tool for the operating room management under uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we examine the issue of memory management in the parallel execution of logic programs. We concentrate on non-deterministic and-parallel schemes which we believe present a relatively general set of problems to be solved, including most of those encountered in the memory management of or-parallel systems. We present a distributed stack memory management model which allows flexible scheduling of goals. Previously proposed models (based on the "Marker model") are lacking in that they impose restrictions on the selection of goals to be executed or they may require consume a large amount of virtual memory. This paper first presents results which imply that the above mentioned shortcomings can have significant performance impacts. An extension of the Marker Model is then proposed which allows flexible scheduling of goals while keeping (virtual) memory consumption down. Measurements are presented which show the advantage of this solution. Methods for handling forward and backward execution, cut and roll back are discussed in the context of the proposed scheme. In addition, the paper shows how the same mechanism for flexible scheduling can be applied to allow the efficient handling of the very general form of suspension that can occur in systems which combine several types of and-parallelism and more sophisticated methods of executing logic programs. We believe that the results are applicable to many and- and or-parallel systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The railway planning problem is usually studied from two different points of view: macroscopic and microscopic. We propose a macroscopic approach for the high-speed rail scheduling problem where competitive effects are introduced. We study train frequency planning, timetable planning and rolling stock assignment problems and model the problem as a multi-commodity network flow problem considering competitive transport markets. The aim of the presented model is to maximize the total operator profit. We solve the optimization model using realistic probleminstances obtained from the network of the Spanish railwa operator RENFE, including other transport modes in Spain