36 resultados para Huella ecológica

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alcances y limitaciones del concepto de huella ecologica .- Antecedentes, Objetivo y definición de huella ecológica .- Cálculo de la huella ecológica .- Factores no recogidos por el indicador .- Reflexiones finales

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El modelo económico imperante en nuestro mundo a lo largo del siglo XX ha conducido a un alto desequilibrio social y económico. Las consecuencias medioambientales de estos desequilibrios comienzan a aflorar, teniendo como principales protagonistas la crisis de recursos naturales básicos que experimentan muchos países, especialmente los que presentan menor grado de desarrollo, así como el conocido fenómeno del cambio climático. Con este telón de fondo, aparecen dos indicadores de sostenibilidad denominados “Huella Ecológica” y “Huella de Carbono” capaces, en el caso de la Huella Ecológica de cuantificar la demanda de recursos naturales de cualquier objeto en estudio en comparación con el potencial productivo del planeta, y en el caso de la Huella de Carbono de cuantificar las emisiones de gases de efecto invernadero asociadas al patrón de consumo establecido por dicho objeto en estudio. Sin embargo, la proliferación actual de metodologías y criterios para la estimación de estos indicadores pone de manifiesto la necesidad de establecer criterios únicos y convergentes en la aplicación práctica de los cálculos de Huella Ecológica y Huella de Carbono que permitan desarrollar todo el potencial de ambos indicadores. En este Proyecto Fin de Carrera se ha aplicado un método para el cálculo de la Huella Ecológica y la Huella de Carbono aplicable en centros universitarios, que a través de un análisis de su actividad económica y de la elaboración de un inventario de uso de suelo y de generación de residuos, permite evaluar la posición medioambiental de dicho centro respecto a su nivel de consumo de recursos y generación de emisiones. La aplicación de este modelo a la Escuela Técnica Superior de Ingenieros de Montes de Madrid ha arrojado interesantes resultados, que cifran en 2.724 toneladas de CO2 su Huella de Carbono y en 948 hectáreas globales su Huella Ecológica, referidas ambas al año 2010. Estas cifras revelan que la posición medioambiental de la Escuela de Ingenieros de Montes de Madrid está en línea con la de otros centros universitarios españoles a la vez que sirven para poner a la citada Escuela en la órbita de otros centros nacionales e internacionales que ya han calculado sus respectivas huellas en un ejercicio de búsqueda de sostenibilidad en el entorno universitario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los problemas ambientales derivados de la actividad del hombre están siendo cada vez más alarmantes. Su aumento, junto con las desigualdades sociales, pone de manifiesto la necesidad de cambiar el rumbo del planeta hacia el desarrollo sostenible. En este contexto aparecen los indicadores de sostenibilidad ambiental, entre los cuales destacan la Huella de Carbono (HC) y la Huella Ecológica (HE). El primero, para cuantificar las emisiones de Gases de Efecto Invernadero emitidos y absorbidos. El segundo, para cuantificar la demanda y puesta en valor de superficie biológicamente productiva. La demanda creciente de servicios ambientales por parte de la sociedad, en general, y las administraciones, en particular, ha conducido a que se empiecen a valorar criterios ambientales en la compra y contratación pública. Los servicios de conservación y mantenimiento ven aquí una oportunidad para diferenciarse y ofrecer una imagen más responsable con el medio ambiente. En el Proyecto Fin de Carrera, se ha decidido utilizar el Método Compuesto de Cuentas Contables (MC3) para el cálculo de HC y HE en los años 2011 y 2012. Dicho método trabaja con enfoque integrado; gracias a su alto nivel de detalle trabaja sobre la organización y el producto garantizando resultados accesibles, transparentes y comparables. La HC y HE del año 2011 es de 150 tCO2e y 35 haG respectivamente. Para el año 2012 los indicadores aumentan (205 tCO2e y 47 haG). Estos aumentos son debido al incremento del consumo pero también al cambio del patrón hacia el consumo de materiales de alta intensidad energética. La consideración de las remociones de emisiones por uso de suelo permite valorar la sostenibilidad del servicio. La HC y HE pueden ser reducidas, compensadas y comunicadas por medio de acciones que se proponen. La inclusión de criterios ambientales y de sostenibilidad en la toma de decisiones está al alcance de cualquier servicio de conservación y mantenimiento.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La preocupación sobre el cambio climático continúa en aumento. Las crecientes evidencias de sus implicaciones ambientales, sociales y económicas plantean escenarios de regulaciones y concesiones públicas a empresas verdes. Las organizaciones privadas trabajan para incorporar nuevos indicadores de sostenibilidad ambiental que les permitan adelantarse a la casi segura futura legislación. Con este telón de fondo, aparecen dos indicadores de sostenibilidad denominados “Huella Ecológica” y “Huella de Carbono”. La Huella Ecológica mide la superficie biológicamente productiva (incluyendo agua y tierra), necesaria para producir todos los recursos que consume y absorber los desechos que genera una actividad. La Huella de Carbono cuantifica la totalidad de gases de efecto invernadero emitidos por efecto directo e indirecto como consecuencia de una actividad. En este contexto, la industria del transporte en general, y en particular el sector de la aviación, están en el punto de mira, por ser los sectores que más emisiones generan. Otro gran foco de emisiones es la ocurrencia de los incendios forestales que, además, se ha convertido en uno de los mayores problemas ecológicos que sufren nuestros montes debido a su frecuencia y gravedad en las últimas décadas. El presente Proyecto Final de Carrera tiene dos objetivos. En primer lugar la cuantificación e interpretación de la Huella de Carbono y Huella Ecológica de la empresa Hispánica de Aviación S.A. (HASA), empresa que presta servicios con helicópteros, sector para el que no se han encontrado estudios de Huella de Carbono hasta la fecha. En segundo lugar, determinar el radio de acción de los helicópteros en su actuación contra incendios forestales para que las emisiones de Gases de Efecto Invernadero compensen su intervención. Para ello se ha utilizado el Método Compuesto de las Cuentas Contables v.12.4 determinando como unidad funcional de producto el kilómetro recorrido por un helicóptero. Por último se ha empleado la metodología utilizada por el Ministerio de Agricultura, Alimentación y Medio Ambiente para el cálculo de emisiones por los Incendios Forestales a fin de realizar una estimación de lo que supone en este sentido la intervención de los helicópteros de HASA en las labores de extinción. La Huella de Carbono y Huella Ecológica para el año 2012 de HASA es 5.515 t CO2e y 1.344 haG. Destaca el peso del consumo de queroseno, que contribuye con 3.103 t CO2e y 786 haG. De acuerdo a las unidades funcionales consideradas, el helicóptero con matrícula SP-SUT/EC-LUQ es el que más Huella de Carbono presenta (12 Kg CO2e/Km) a diferencia del helicóptero con matrícula SP-SUC que es el que menos Huella de Carbono manifiesta (6 Kg CO2e/Km). Entre las diferentes conclusiones se destaca que la salida de un helicóptero a un incendio en España, siempre va a valorarse como compensada en términos de Huella de Carbono. Es decir, las emisiones que va a evitar su salida (disminución de la superficie quemada), son considerablemente mayores que las que se pueden producir por su puesta en funcionamiento. El presente proyecto se acompaña de una propuesta de acciones que se consideran de gran utilidad tanto para posteriores evaluaciones como para la mejora del posicionamiento ambiental de HASA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En su encíclica Laudato si de 24 de mayo de 2015 subtitulada "Sobre el cuidado de la casa común", el Papa Francisco hizo un llamamiento a “pensar en los distintos aspectos de una ecologia integral, que incorpore claramente las dimensiones humanas y sociales”. Este artículo incide, precisamente, en la importancia de conciliar el desarrollo de la actividad portuaria con el uso eficaz y eficiente de los recursos que ésta precisa en un entorno de gran valor ambiental como es el de los puertos; y todo ello dentro de un complejo contexto administrativo que implica la participacion de los recursos humanos de la empresa portuaria y la aplicacion de su know-how

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Se analiza el ciclo de vida de una ventana de madera y se calcula su huella ecológica. Se compara con la bibliografía existente la huella ecológica de la ventana de madera con la de PVC y la de alumnio

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El cambio climático y sus efectos requieren con urgencia el desarrollo de estrategias capaces no solo de mitigar pero también permitir la adaptación de los sistemas afectados por este fenómeno a los cambios que están provocando a nivel mundial. Olas de calor más largas y frecuentes, inundaciones, y graves sequías aumentan la vulnerabilidad de la población, especialmente en asentamientos urbanos. Este fenómeno y sus soluciones potenciales han sido ampliamente estudiados en las últimas décadas desde diferentes perspectivas y escalas que analizan desde el fenómeno regional de isla de calor al aumento de la intensidad energética necesaria en los edificios para mantener las condiciones de confort en los escenarios de calentamiento que se predicen. Su comprensión requiere el entendimiento de este fenómeno y un profundo análisis de las estrategias que pueden corregirlo y adaptarse a él. En la búsqueda de soluciones a este problema, las estrategias que incorporan sistemas naturales tales como las cubiertas ajardinadas, las fachadas vegetadas y bosques urbanos, se presentan como opciones de diseño capaces de proporcionan múltiples servicios al ecosistema urbano y de regular y hacer frente a los efectos del cambio climático. Entre los servicios que aportan estos sistemas naturales se incluyen la gestión de agua de tormentas, el control del efecto isla de calor, la mejora de la calidad del aire y del agua, el aumento de la diversidad, y como consecuencia de todo lo anterior, la reducción de la huella ecológica de las ciudades. En la última década, se han desarrollado múltiples estudios para evaluar y cuantificar los servicios al ecosistema proporcionados por las infraestructuras verdes, y específicamente las cubiertas ajardinadas, sin embargo, determinados servicios como la capacidad de la regulación del microclima urbano no ha sido apenas estudiados. La mayor parte de la literatura en este campo la componen estudios relacionados con la capacidad de las cubiertas ajardinadas de reducir el efecto de la isla de calor, en una escala local, o acerca de la reducción de la demanda energética de refrigeración debida a la instalación de cubiertas ajardinadas en la escala de edificio. La escala intermedia entre estos dos ámbitos, la calle, desde su ámbito habitable cercano al suelo hasta el límite superior del cañón urbano que configura, no han sido objeto detallado de estudio por lo que es esta escala el objeto de esta tesis doctoral. Esta investigación tiene como objeto contribuir en este campo y aportar un mayor entendimiento a través de la cuantificación del impacto de las cubiertas ajardinadas sobre la temperatura y humedad en el cañón urbano en la escala de calle y con un especial foco en el nivel peatonal. El primer paso de esta investigación ha sido la definición del objeto de estudio a través del análisis y revisión de trabajos tanto teóricos como empíricos que investigan los efectos de cubiertas ajardinadas en el entorno construido, entendidas como una herramienta para la adaptación y mitigación del impacto del cambio climático en las ciudades. La literatura analizada, revela el gran potencial de los sistemas vegetales como herramientas para el diseño pasivo puesto que no solo son capaces de mejorar las condiciones climáticas y microclimaticas en las ciudades reduciendo su demanda energética, sino también la necesidad de mayor análisis en la escala de calle donde confluyen el clima, las superficies urbanas y materiales y vegetación. Este análisis requiere una metodología donde se integren la respuesta térmica de edificios, las variaciones en los patrones de viento y radiación, y la interacción con la vegetación, por lo que un análisis cuantitativo puede ayudar a definir las estrategias más efectivas para lograr espacios urbanos más habitables. En este contexto, el objetivo principal de esta investigación ha sido la evaluación cuantitativa del impacto de la cubierta ajardinada en el microclima urbano a escala de barrio en condiciones de verano en los climas mediterráneos continentales. Para el logro de este objetivo, se ha seguido un proceso que persigue identificar los modelos y herramientas de cálculo capaces de capturar el efecto de la cubierta ajardinada sobre el microclima, identificar los parámetros que potencian o limitan este efecto, y cuantificar las variaciones que microclima creado en el cañón urbano produce en el consumo de energía de los edificios que rodean éste espacio. La hipótesis principal detrás de esta investigación y donde los objetivos anteriores se basan es el siguiente: "una cubierta ajardinada instalada en edificios de mediana altura favorece el establecimiento de microclimas a nivel peatonal y reduce las temperaturas en el entorno urbano donde se encuentra”. Con el fin de verificar la hipótesis anterior y alcanzar los objetivos propuestos se ha seguido la siguiente metodología: • definición del alcance y limitaciones del análisis • Selección de las herramientas y modelos de análisis • análisis teórico de los parámetros que afectan el efecto de las cubiertas ajardinadas • análisis experimental; • modelización energética • conclusiones y futuras líneas de trabajo Dada la complejidad de los fenómenos que intervienen en la generación de unas determinadas condiciones microclimáticas, se ha limitado el objeto de este estudio a las variables de temperatura y humedad, y sólo se han tenido en cuenta los componentes bióticos y abióticos del sistema, que incluyen la morfología, características superficiales del entorno estudiado, así como los elementos vegetales. Los componentes antrópicos no se han incluido en este análisis. La búsqueda de herramientas adecuadas para cumplir con los objetivos de este análisis ha concluido en la selección de ENVI-met v4 como el software más adecuado para esta investigación por su capacidad para representar los complejos fenómenos que caracterizan el microclima en cañones urbanos, en una escala temporal diaria y con unas escala local de vecindario. Esta herramienta supera el desafío que plantean los requisitos informáticos de un cálculo completo basado en elementos finitos realizados a través de herramientas de dinámica de fluidos computacional (CFD) que requieren una capacidad de cálculo computacional y tiempo privativos y en una escala dimensional y temporal limitada a esta capacidad computacional lo que no responde a los objetivos de esta investigación. ENVI-met 4 se basa es un modelo tridimensional del micro clima diseñado para simular las interacciones superficie-planta-aire en entornos urbanos. Basado en las ecuaciones fundamentales del equilibrio que representan, la conservación de masa, energía y momento. ENVI-met es un software predictivo, y como primer paso ha requerido la definición de las condiciones iniciales de contorno que se utilizan como punto de partida por el software para generar su propio perfil de temperatura y humedad diaria basada en la localización de la construcción, geometría, vegetación y las superficies de características físicas del entorno. La geometría de base utilizada para este primer análisis se ha basado en una estructura típica en cuanto al trazado urbano situada en Madrid que se ha simulado con una cubierta tradicional y una cubierta ajardinada en sus edificios. La estructura urbana seleccionada para este análisis comparativo es una red ortogonal con las calles principales orientadas este-oeste. El edificio típico que compone el vecindario se ha definido como “business as usual” (BAU) y se ha definido con una cubierta de baldosa de hormigón estándar, con un albedo 0.3, paredes con albedo 0.2 (construcción de muro de ladrillo típico) y cerramientos adiabáticos para evitar las posibles interferencias causadas por el intercambio térmico con el ambiente interior del edificio en los resultados del análisis. Para el caso de la cubierta ajardinada, se mantiene la misma geometría y características del edificio con excepción de la cobertura superficial de la azotea. Las baldosas de hormigón se han modificado con una cubierta ajardinada extensiva cubierta con plantas xerófilas, típicas en el clima de Madrid y caracterizado por su índice de densidad foliar, el “leaf area density” (LAD), que es la superficie total de superficie de hojas por unidad de volumen (m2/m3). El análisis se centra en los cañones urbanos entendidos como el espacio de calle comprendido entre los límites geométricos de la calle, verticales y horizontales, y el nivel superior de la cota urbana nivel de cubiertas. Los escenarios analizados se basan en la variación de la los principales parámetros que según la literatura analizada condicionan las variaciones microclimáticas en el ámbito urbano afectado por la vegetación, la velocidad del viento y el LAD de la azotea. Los resultados han sido registrados bajo condiciones de exposición solar diferentes. Las simulaciones fueron realizadas por los patrones de viento típico de verano, que para Madrid se caracterizan por vientos de componente suroeste que van desde 3 a 0 m/s. las simulaciones fueron realizadas para unas condiciones climáticas de referencia de 3, 2, 1 y 0 m/s a nivel superior del cañón urbano, como condición de contorno para el análisis. Los resultados calculados a 1,4 metros por encima del nivel del suelo, en el espacio habitado, mostraron que el efecto de la cubierta ajardinada era menor en condiciones de contorno con velocidades de viento más altas aunque en ningún caso el efecto de la cubierta verde sobre la temperatura del aire superó reducciones de temperatura de aire superiores a 1 º C. La humedad relativa no presentó variaciones significativas al comparar los diferentes escenarios. Las simulaciones realizadas para vientos con velocidad baja, entre 0 y 1 m/s mostraron que por debajo de 0.5 m/s la turbulencia del modelo aumentó drásticamente y se convirtió en el modelo inestable e incapaz de producir resultados fiables. Esto es debido al modelo de turbulencia en el software que no es válido para velocidades de viento bajas, lo que limita la capacidad de ENVI-met 4 para realizar simulaciones en estas condiciones de viento y es una de las principales conclusiones de este análisis en cuanto a la herramienta de simulación. También se comprobó el efecto de las densidades de la densidad de hoja (LAD) de los componentes vegetales en el modelo en la capa de aire inmediatamente superior a la cubierta, a 0,5 m sobre este nivel. Se compararon tres alternativas de densidad de hoja con la cubierta de baldosa de hormigón: el techo verde con LAD 0.3 (hierba típica o sedum), LAD 1.5 (plantas mixtas típicas) y LAD 2.5 (masa del árbol). Los resultados mostraron diferencias de temperatura muy relevante entre las diferentes alternativas de LAD analizadas. Los resultados muestran variaciones de temperatura que oscilan entre 3 y 5 º C al comparar el estándar de la azotea concreta con albedo 0, 3 con el techo con vegetación y vegetación densa, mostrando la importancia del LAD en la cuantificación de los efectos de las cubiertas vegetales en microclima circundante, lo que coincide con los datos reportados en la literatura existente y con los estudios empíricos analizados. Los resultados de los análisis teóricos han llegado a las siguientes conclusiones iniciales relacionadas con la herramienta de simulación y los resultados del modelo: En relación con la herramienta ENVI-met, se han observado limitaciones para el análisis. En primer lugar, la estructura rígida de la geometría, las bases de datos y el tamaño de la cuadrícula, limitan la escala y resolución de los análisis no permitiendo el desarrollo de grandes zonas urbanas. Por otro lado la estructura de ENVI-met permite el desarrollo de este tipo de simulación tan complejo dentro de tiempos razonables de cálculo y requerimientos computacionales convencionales. Otra limitación es el modelo de turbulencia del software, que no modela correctamente velocidades de viento bajas (entre 0 y 1 m/s), por debajo de 0,5 m/s el modelo da errores y no es estable, los resultados a estas velocidades no son fiables porque las turbulencias generadas por el modelo hacen imposible la extracción de patrones claros de viento y temperatura que permitan la comparación entre los escenarios de cubierta de hormigón y ajardinada. Además de las limitaciones anteriores, las bases de datos y parámetros de entrada en la versión pública del software están limitados y la complejidad de generar nuevos sistemas adaptándolos al edificio o modelo urbano que se quiera reproducir no es factible salvo en la versión profesional del software. Aparte de las limitaciones anteriores, los patrones de viento y perfiles de temperatura generados por ENVI-met concuerdan con análisis previos en los que se identificaban patrones de variación de viento y temperaturas en cañones urbanos con patrones de viento, relación de aspecto y dimensiones similares a los analizados en esta investigación. Por lo tanto, el software ha demostrado una buena capacidad para reproducir los patrones de viento en los cañones de la calle y capturar el efecto de enfriamiento producido por la cubierta verde en el cañón. En relación con el modelo, el resultado revela la influencia del viento, la radiación y el LAD en la temperatura del aire en cañones urbanos con relación de aspecto comprendida entre 0,5 y 1. Siendo el efecto de la cubierta verde más notable en cañones urbanos sombreados con relación de aspecto 1 y velocidades de viento en el nivel de “canopy” (por encima de la cubierta) de 1 m/s. En ningún caso las reducciones en la temperatura del aire excedieron 1 º C, y las variaciones en la humedad relativa no excedieron 1% entre los escenarios estudiados. Una vez que se han identificado los parámetros relevantes, que fueron principalmente la velocidad del viento y el LAD, se realizó un análisis experimental para comprobar los resultados obtenidos por el modelo. Para éste propósito se identificó una cubierta ajardinada de grandes dimensiones capaz de representar la escala urbana que es el objeto del estudio. El edificio usado para este fin fue el parking de la terminal 4 del aeropuerto internacional de Madrid. Aunque esto no es un área urbana estándar, la escala y la configuración del espacio alrededor del edificio fueron considerados aceptables para el análisis por su similitud con el contexto urbano objeto de estudio. El edificio tiene 800 x 200 m, y una altura 15 m. Está rodeado de vías de acceso pavimentadas con aceras conformando un cañón urbano limitado por el edificio del parking, la calle y el edificio de la terminal T4. El aparcamiento está cerrado con fachadas que configuran un espacio urbano de tipo cañón, con una relación de aspecto menor que 0,5. Esta geometría presenta patrones de viento y velocidad dentro del cañón que difieren ligeramente de los generados en el estudio teórico y se acercan más a los valores a nivel de canopo sobre la cubierta del edificio, pero que no han afectado a la tendencia general de los resultados obtenidos. El edificio cuenta con la cubierta ajardinada más grande en Europa, 12 Ha cubiertas por con una mezcla de hierbas y sedum y con un valor estimado de LAD de 1,5. Los edificios están rodeados por áreas plantadas en las aceras y árboles de sombra en las fachadas del edificio principal. El efecto de la cubierta ajardinada se evaluó mediante el control de temperaturas y humedad relativa en el cañón en un día típico de verano. La selección del día se hizo teniendo en cuenta las predicciones meteorológicas para que fuesen lo más semejantes a las condiciones óptimas para capturar el efecto de la cubierta vegetal sobre el microclima urbano identificadas en el modelo teórico. El 09 de julio de 2014 fue seleccionado para la campaña de medición porque las predicciones mostraban 1 m/s velocidad del viento y cielos despejados, condiciones muy similares a las condiciones climáticas bajo las que el efecto de la cubierta ajardinada era más notorio en el modelo teórico. Las mediciones se registraron cada hora entre las 9:00 y las 19:00 en 09 de julio de 2014. Temperatura, humedad relativa y velocidad del viento se registraron en 5 niveles diferentes, a 1.5, 4.5, 7.5, 11.5 y 16 m por encima del suelo y a 0,5 m de distancia de la fachada del edificio. Las mediciones fueron tomadas en tres escenarios diferentes, con exposición soleada, exposición la sombra y exposición influenciada por los árboles cercanos y suelo húmedo. Temperatura, humedad relativa y velocidad del viento se registraron con un equipo TESTO 410-2 con una resolución de 0,1 ºC para temperatura, 0,1 m/s en la velocidad del viento y el 0,1% de humedad relativa. Se registraron las temperaturas de la superficie de los edificios circundantes para evaluar su efecto sobre los registros usando una cámara infrarroja FLIR E4, con resolución de temperatura 0,15ºC. Distancia mínima a la superficie de 0,5 m y rango de las mediciones de Tª de - 20 º C y 250 º C. Los perfiles de temperatura extraídos de la medición in situ mostraron la influencia de la exposición solar en las variaciones de temperatura a lo largo del día, así como la influencia del calor irradiado por las superficies que habían sido expuestas a la radiación solar así como la influencia de las áreas de jardín alrededor del edificio. Después de que las medidas fueran tomadas, se llevaron a cabo las siguientes simulaciones para evaluar el impacto de la cubierta ajardinada en el microclima: a. estándar de la azotea: edificio T4 asumiendo un techo de tejas de hormigón con albedo 0.3. b. b. cubierta vegetal : T4 edificio asumiendo una extensa cubierta verde con valor bajo del LAD (0.5)-techo de sedum simple. c. c. cubierta vegetal: T4 edificio asumiendo una extensa cubierta verde con alta joven valor 1.5-mezcla de plantas d. d. cubierta ajardinada más vegetación nivel calle: el edificio T4 con LAD 1.5, incluyendo los árboles existentes a nivel de calle. Este escenario representa las condiciones actuales del edificio medido. El viento de referencia a nivel de cubierta se fijó en 1 m/s, coincidente con el registro de velocidad de viento en ese nivel durante la campaña de medición. Esta velocidad del viento se mantuvo constante durante toda la campaña. Bajo las condiciones anteriores, los resultados de los modelos muestran un efecto moderado de azoteas verdes en el microclima circundante que van desde 1 º a 2 º C, pero una contribución mayor cuando se combina con vegetación a nivel peatonal. En este caso las reducciones de temperatura alcanzan hasta 4 ºC. La humedad relativa sin embargo, no presenta apenas variación entre los escenarios con y sin cubierta ajardinada. Las temperaturas medidas in situ se compararon con resultados del modelo, mostrando una gran similitud en los perfiles definidos en ambos casos. Esto demuestra la buena capacidad de ENVI-met para reproducir el efecto de la cubierta ajardinada sobre el microclima y por tanto para el fin de esta investigación. Las diferencias más grandes se registraron en las áreas cercanas a las zonas superiores de las fachadas que estaban más expuestas a la radiación del sol y también el nivel del suelo, por la influencia de los pavimentos. Estas diferencias se pudieron causar por las características de los cerramientos en el modelo que estaban limitados por los datos disponibles en la base de datos de software, y que se diferencian con los del edificio real. Una observación importante derivada de este estudio es la contribución del suelo húmedo en el efecto de la cubierta ajardinada en la temperatura del aire. En el escenario de la cubierta ajardinada con los arboles existentes a pie de calle, el efecto del suelo húmedo contribuye a aumentar las reducciones de temperatura hasta 4.5ºC, potenciando el efecto combinado de la cubierta ajardinada y la vegetación a pie de calle. Se realizó un análisis final después de extraer el perfil horario de temperaturas en el cañón urbano influenciado por el efecto de las cubiertas ajardinadas y los árboles. Con esos perfiles modificados de temperatura y humedad se desarrolló un modelo energético en el edificio asumiendo un edificio cerrado y climatizado, con uso de oficinas, una temperatura de consigna de acuerdo al RITE de 26 ºC, y con los sistemas por defecto que establece el software para el cálculo de la demanda energética y que responden a ASHRAE 90.1. El software seleccionado para la simulación fue Design Builder, por su capacidad para generar simulaciones horarias y por ser una de las herramientas de simulación energética más reconocidas en el mercado. Los perfiles modificados de temperatura y humedad se insertaron en el año climático tipo y se condujo la simulación horaria para el día definido, el 9 de Julio. Para la simulación se dejaron por defecto los valores de conductancia térmica de los cerramientos y la eficiencia de los equipos de acuerdo a los valores que fija el estándar ASHRAE para la zona climática de Madrid, que es la 4. El resultado mostraba reducciones en el consumo de un día pico de hasta un 14% de reducción en las horas punta. La principal conclusión de éste estudio es la confirmación del potencial de las cubiertas ajardinadas como una estrategia para reducir la temperatura del aire y consumo de energía en los edificios, aunque este efecto puede ser limitado por la influencia de los vientos, la radiación y la especie seleccionada para el ajardinamiento, en especial de su LAD. Así mismo, en combinación con los bosques urbanos su efecto se potencia e incluso más si hay pavimentos húmedos o suelos porosos incluidos en la morfología del cañón urbano, convirtiéndose en una estrategia potencial para adaptar los ecosistemas urbanos el efecto aumento de temperatura derivado del cambio climático. En cuanto a la herramienta, ENVI-met se considera una buena opción para éste tipo de análisis dada su capacidad para reproducir de un modo muy cercano a la realidad el efecto de las cubiertas. Aparte de ser una herramienta validada en estudios anteriores, en el caso experimental se ha comprobado por medio de la comparación de las mediciones con los resultados del modelo. A su vez, los resultados y patrones de vientos generados en los cañones urbanos coinciden con otros estudios similares, concluyendo por tanto que es un software adecuado para el objeto de esta tesis doctoral. Como líneas de investigación futura, sería necesario entender el efecto de la cubierta ajardinada en el microclima urbano en diferentes zonas climáticas, así como un mayor estudio de otras variables que no se han observado en este análisis, como la temperatura media radiante y los indicadores de confort. Así mismo, la evaluación de otros parámetros que afectan el microclima urbano tales como variables geométricas y propiedades superficiales debería ser analizada en profundidad para tener un resultado que cubra todas las variables que afectan el microclima en el cañón urbano. ABSTRACT Climate Change is posing an urgency in the development of strategies able not only to mitigate but also adapt to the effects that this global problem is evidencing around the world. Heat waves, flooding and severe draughts increase the vulnerability of population, and this is especially critical in urban settlements. This has been extensively studied over the past decades, addressed from different perspectives and ranging from the regional heat island analysis to the building scale. Its understanding requires physical and dimensional analysis of this broad phenomenon and a deep analysis of the factors and the strategies which can offset it. In the search of solutions to this problem, green infrastructure elements such as green roofs, walls and urban forests arise as strategies able provide multiple regulating ecosystem services to the urban environment able to cope with climate change effects. This includes storm water management, heat island effect control, and improvement of air and water quality. Over the last decade, multiple studies have been developed to evaluate and quantify the ecosystem services provided by green roofs, however, specific regulating services addressing urban microclimate and their impact on the urban dwellers have not been widely quantified. This research tries to contribute to fill this gap and analyzes the effects of green roofs and urban forests on urban microclimate at pedestrian level, quantifying its potential for regulating ambient temperature in hot season in Mediterranean –continental climates. The study is divided into a sequence of analysis where the critical factors affecting the performance of the green roof system on the microclimate are identified and the effects of the green roof is tested in a real case study. The first step has been the definition of the object of study, through the analysis and review of theoretical and empirical papers that investigate the effects of covers landscaped in the built environment, in the context of its use as a tool for adaptation and mitigation of the impact of climate change on cities and urban development. This literature review, reveals the great potential of the plant systems as a tool for passive design capable of improving the climatic and microclimatic conditions in the cities, as well as its positive impact on the energy performance of buildings, but also the need for further analysis at the street scale where climate, urban surfaces and materials, and vegetation converge. This analysis requires a methodology where the thermal buildings response, the variations in the patterns of wind and the interaction of the vegetation are integrated, so a quantitative analysis can help to define the most effective strategies to achieve liveable urban spaces and collaterally, , the improvement of the surrounding buildings energy performance. In this specific scale research is needed and should be customized to every climate, urban condition and nature based strategy. In this context, the main objective for this research was the quantitative assessment of the Green roof impact on the urban microclimate at a neighbourhood scale in summer conditions in Mediterranean- continental climates. For the achievement of this main objective, the following secondary objectives have been set: • Identify the numerical models and calculation tools able to capture the effect of the roof garden on the microclimate. • Identify the enhancing or limiting parameter affecting this effect. • Quantification of the impact of the microclimate created on the energy consumption of buildings surrounding the street canyon analysed. The main hypothesis behind this research and where the above objectives are funded on is as follows: "An extensive roof installed in medium height buildings favours the establishment of microclimates at the pedestrian level and reduces the temperatures in the urban environment where they are located." For the purpose of verifying the above hypothesis and achieving the proposed objectives the following methodology has been followed: - Definition of hypothesis and objectives - Definition of the scope and limitations - Theoretical analysis of parameters affecting gren roof performance - Experimental analysis; - Energy modelling analyisis - Conclusions and future lines of work The search for suitable tools and models for meeting the objectives of this analysis has led to ENVI-met v4 as the most suitable software for this research. ENVI met is a three-dimensional micro-climate model designed to simulate the surface-plant-air interactions in urban environments. Based in the fundamental equations representing, mass, energy and momentum conservation, the software has the capacity of representing the complex phenomena characterizing the microclimate in urban canyons, overcoming the challenge posed by the computing requirements of a full calculus based on finite elements done via traditional computational fluid dynamics tools. Once the analysis tool has been defined, a first set of analysis has been developed to identify the main parameters affecting the green roof influence on the microclimate. In this analysis, two different scenarios are compared. A neighborhood with standard concrete tile roof and the same configuration substituting the concrete tile by an extensive green roof. Once the scenarios have been modeled, different iterations have been run to identify the influence of different wind patterns, solar exposure and roof vegetation type on the microclimate, since those are the most relevant variables affecting urban microclimates. These analysis have been run to check the conditions under which the effects of green roofs get significance. Since ENVI-met V4 is a predictive software, the first step has been the definition of the initial weather conditions which are then used as starting point by the software, which generates its own daily temperature and humidity profile based on the location of the building, geometry, vegetation and the surfaces physical characteristics. The base geometry used for this first analysis has been based on a typical urban layout structure located in Madrid, an orthogonal net with the main streets oriented East-West to ease the analysis of solar radiation in the different points of the model. This layout represents a typical urban neighborhood, with street canyons keeping an aspect ratio between 0.5 and 1 and high sky view factor to ensure correct sun access to the streets and buildings and work with typical wind flow patterns. Finally, the roof vegetation has been defined in terms of foliage density known as Leaf Area Density (LAD) and defined as the total one-sided leaf area per unit of layer volume. This index is the most relevant vegetation characteristic for the purpose of calculating the effect of vegetation on wind and solar radiation as well as the energy consumed during its metabolic processes. The building as usual (BAU) configuring the urban layout has been defined with standard concrete tile roofs, considering 0.3 albedo. Walls have been set with albedo 0.2 (typical brick wall construction) and adiabatic to avoid interference caused by thermal interchanges with the building indoor environment. For the proposed case, the same geometry and building characteristics have been kept. The only change is the roof surface coverage. The gravel on the roof has been changed with an extensive green roof covered with drought tolerant plants, typical in Madrid climate, and characterized by their LAD. The different scenarios analysed are based in the variation of the wind speed and the LAD of the roof. The results have been recorded under different sun exposure conditions. Simulations were run for the typical summer wind patterns, that for Madrid are characterized by South-west winds ranging from 3 to 0 m/s. Simulations were run for 3, 2, 1 and 0 m/s at urban canopy level. Results taken at 1.4 m above the ground showed that the green roof effect was lower with higher wind speeds and in any case the effect of the green roof on the air temperatures exceeded air temperature reductions higher than 1ºC. Relative humidity presented no variations when comparing the different scenarios. For the analysis at 0m/s, ENVI-met generated error and no results were obtained. Different simulations showed that under 0.5 m/s turbulence increased dramatically and the model became unstable and unable to produce reliable results. This is due to the turbulence model embedded in the software which is not valid for low wind speeds (below 1 m/s). The effect of the different foliage densities was also tested in the model. Three different alternatives were compared against the concrete roof: green roof with LAD 0.3 ( typical grass or sedum), 1.5 (typical mixed plants) and 2.5 (tree mass). The results showed very relevant temperature differences between the different LAD alternatives analyzed. Results show temperature variations ranging between 3 and 5 ºC when comparing the standard concrete roof with albedo 0, 3 with the vegetated roof and vegetated mass, showing the relevance of the LAD on the effects of green roofs on microclimate. This matches the data reported in existing literature and empirical studies and confirms the relevance of the LAD in the roof effect on the surrounding microclimate. The results of the theoretical analysis have reached the following initial conclusions related to both, the simulation tool and the model results: • In relation to the tool ENVI-met, some limitations for the analysis have been observed. In first place, the rigid structure of the geometry, the data bases and the grid size, limit the scale and resolution of the analysis not allowing the development of large urban areas. On the other hand the ENVI-met structure enables the development of this type of complex simulation within reasonable times and computational requirements for the purpose of this analysis. Additionally, the model is unable to run simulations at wind speeds lower than 0.5 m/s, and even at this speed, the results are not reliable because the turbulences generated by the model that made impossible to extract clear temperature differences between the concrete and green roof scenarios. Besides the above limitations, the wind patterns and temperature profiles generated by ENVImet are in agreement with previous analysis identifying wind patterns in urban canyons with similar characteristics and aspect ratio. Therefore the software has shown a good capacity for reproducing the wind effects in the street canyons and seems to capture the cooling effect produced by the green roof. • In relation to the model, the results reveals the influence of wind, radiation and LAD on air temperature in urban canyons with aspect ratio comprised between 0.5 and 1. Being the effect of the green roof more noticeable in shaded urban canyons with aspect ratio 1 and wind speeds of 1 m/s. In no case the reductions in air temperature exceeded 1ºC. Once the relevant parameters have been identified, mainly wind speed and LAD, an experimental analysis was conducted to test the results obtained by the model. For this purpose a large green roof was identified, able to represent the urban scale which is the object of the studio. The building identified for this purpose was the terminal 4, parking building of the international Madrid Airport. Even though this is not a standard urban area, the scale and configuration of the space around the building were deemed as acceptable for the analysis. The building is an 800x200 m, 15 m height parking building, surrounded by access paved paths and the terminal building. The parking is enclosed with facades that configure an urban canyon-like space, although the aspect ratio is lower than 0.5 and the wind patterns might differ from the theoretical model run. The building features the largest green roof in Europe, a 12 Ha extensive green roof populated with a mix of herbs and sedum with a LAD of 1.5. The buildings are surrounded by planted areas at the sidewalk and trees shading the main building facades. Green roof performance was evaluated by monitoring temperatures and relative humidity in the canyon in a typical summer day. The day selection was done taking into account meteorological predictions so the weather conditions on the measurement day were as close as possible as the optimal conditions identified in terms of green roof effects on the urban canyon. July 9th 2014 was selected for the measurement campaign because the predictions showed 1 m/s wind speed and sunny sky, which were very similar to the weather conditions where the effect of the green roof was most noticeable in the theory model. Measurements were registered hourly from 9:00am to 19:00 on July 9th 2014. Temperature, relative humidity and wind speed were recorded at 5 different levels, at 1.5, 4.5, 7.5, 11.5 and 16 m above ground and at 0.5 m distance from the building façade. Measurements were taken in three different scenarios, sunny exposure, shaded exposure, and shaded exposure influenced by nearby trees and moist soil. Temperature, relative humidity and wind speed were registered using a TESTO 410-2 anemometer, with 0.1ºC resolution for temperature, 0.1 m/s resolution for wind speed and 0.1 % for relative humidity. Surface temperatures were registered using an infrared camera FLIR E4, with temperature resolution 0.15ºC. Minimal distance to surface of 0.5 m and Tª measurements range from -20ºC and 250ºC. The temperature profiles measured on the site showed the influence of solar exposure on the temperature variations along the day, as well as the influence of the heat irradiated by the building surfaces which had been exposed to the sun radiation and those influenced by the moist soft areas around the building. After the measurements were taken, the following simulations were conducted to evaluate the impact of the green roof on the microclimate: a. Standard roof: T4 building assuming a concrete tile roof with albedo 0.3. b. Green roof: T4 building assuming an extensive green roof with low LAD value (0.5)-Simple Sedum roof. c. Green roof: T4 building assuming an extensive green roof with high LAD value 1.5- Lucerne and grasses d. Green roof plus street level vegetation: T4 Building, LAD 1.5 (Lucerne), including the existing trees at street level. This scenario represents the current conditions of the building. The urban canopy wind was set as 1 m/s, the wind speed register at that level during the measurement campaign. This wind speed remained constant over the whole campaign. Under the above conditions, the results of the models show a moderate effect of green roofs on the surrounding microclimate ranging from 1ºC to 2ºC, but a larger contribution when combining it with vegetation at pedestrian level, where 4ºC temperature reductions are reached. Relative humidity remained constant. Measured temperatures and relative humidity were compared to model results, showing a close match in the profiles defined in both cases and the good capacity of ENVI met to capture the impact of the green roof in this analysis. The largest differences were registered in the areas close to the top areas of the facades which were more exposed to sun radiation and also near to the soil level. These differences might be caused by differences between the materials properties included in the model (which were limited by the data available in the software database) and those in the real building. An important observation derived from this study is the contribution of moist soil to the green roof effect on air temperatures. In the green roof scenario with surrounding trees, the effect of the moist soil contributes to raise the temperature reductions at 4.5ºC. A final analysis was conducted after extracting the hourly temperature profile in the street canyon influenced by the effect of green roofs and trees. An energy model was run on the building assuming it was a conventional enclosed building. Energy demand reductions were registered in the building reaching up to 14% reductions at the peak hour. The main conclusion of this study is the potential of the green roofs as a strategy for reducing air temperatures and energy consumption in the buildings, although this effect can be limited by the influence of high speed winds. This effect can be enhanced its combination with urban forests and even more if soft moist pavements are included in the urban canyon morphology, becoming a potential strategy for adapting urban ecosystems to the increasing temperature effect derived from climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La arquitectura y la construcción deben generar un bien común para la sociedad y medio ambiente, los arquitectos tienen la responsabilidad de mitigar muchos efectos negativos que se generan en esta profesión; esto no es posible si los estudiantes egresan con un conocimiento nulo sobre la arquitectura sostenible; por lo que surge la inquietud de desarrollar la presente tesis, con el objetivo de aportar de una forma sutil al desarrollo de la arquitectura compartiendo conocimiento para generar conocimiento, ya que la investigación que a continuación se desarrolla está enfocada al desarrollo de la arquitectura sostenible en el campo de la formación de los estudiantes, donde se pueda enlazar los nuevos requerimientos profesionales planteados desde la sostenibilidad. La formación del arquitecto ha intentado abordar el conocimiento humanístico, técnico, cultural, tecnológico, calculo estructural, instalaciones y construcciones; sin embargo, se ha dejado a un lado lo que abarca la arquitectura sostenible, como calidad de vida, diseño bioclimático, energías renovables, normativas sostenibles, economía viable, emisiones, contaminación y residuos generados, materiales, elementos constructivos sostenibles, mancha urbana, huella ecológica, impacto ambiental y análisis del ciclo de vida, entre otras estrategias o elementos. A través de la investigación científica y profunda que se ha realizado, se busca conformar el conocimiento sistemático que contribuya a la resolución de los problemas de nuestra sociedad, ambiente y educación, con la elaboración de un sistema metodológico de evaluación y aplicación de sostenibilidad en los modelos educativos. Para desarrollar el sistema de evaluación y aplicación, se desarrolla una metodología de investigación donde se justifica la necesidad de la creación de dicho sistema, en base al análisis de la situación actual del medio ambiente y la relación directa con la arquitectura, construcción y conocimientos adquiridos en la formación de los estudiantes de arquitectura, donde se demuestra la importancia de la educación de la arquitectura sostenible en el desarrollo de las sociedades. En base al análisis de metodologías y sistemas que evalúan la sostenibilidad de los edificios y los sistemas que evalúan la educación, se propone uno propio para evaluar las asignaturas de los modelos educativos en base a elementos sostenibles propuestos. La presente investigación se enmarca en una estrategia general de promover la evaluación y aplicación de la sostenibilidad en los modelos educativos de las escuelas de arquitectura a nivel internacional; como caso de estudio se evaluará el plan de estudios llamado Minerva, de la Benemérita Universidad Autónoma de Puebla en México, donde he realizado una estancia de investigación y la Escuela Técnica Superior de Arquitectura de la Universidad Politécnica de Madrid en España, donde he cursado el doctorado. ABSTRACT Architecture and construction must generate a common good for the society and environment, the architects have the responsibility of mitigating many negative effects that are generated in this profession; this is not possible if the students graduate with a void knowledge on the sustainable architecture that is why the concern for developing the present thesis, with the aim to contribute to the development of the architecture sharing knowledge to generate knowledge, seeing as the investigation that later develops is focused on the development of the sustainable architecture in about the student’s professional training, where it could connect the new professional requirements raised from the sustainability. The architect’s professional training has tried to approach the humanistic, technical, cultural, technological knowledge, structural calculation, fittings and constructions; nevertheless, there has been left aside what includes the sustainable architecture, as quality of life, design bioclimatic, renewable energies, sustainable regulations, viable economy, emission, pollution and generated, material residues, constructive sustainable elements, urban spot, ecological fingerprint, environmental impact and analysis of the life cycle, between other strategies or elements. Across the scientific and deep research that has been realized, it reaches to make up the systematic knowledge that he contributes to the resolution of the problems of our society, environment and education, with the production of a methodological system of evaluation and application of sustainability in the educational models. To develop the system of evaluation and application, there is a methodology of research where it justifies itself the need of the creation of the above mentioned system, on the basis of the analysis of the current situation of the environment and the direct relationship with the architecture, construction and knowledge acquired in the architecture student’s education, where there is demonstrated the matter of the education of the sustainable architecture in the development of the companies. Based on the analysis of methodologies and systems that evaluate the sustainability of the buildings and the systems that evaluate the education, there is one own proposes to evaluate the subjects of the educational models on the basis of sustainable proposed elements. The present research places in a general strategy of promoting the evaluation and application of the sustainability in the educational models of the schools of architecture worldwide; since case of study will evaluate the study plan called Minerva, of the Meritorious Autonomous University of It Populates in Mexico, where I have realized a stay of researching and the Technical Top School of Architecture of the Technical University of Madrid in Spain, where the PHD has been done.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El cambio climático afecta al viñedo en varios aspectos con posibles consecuencias económicas y tecnológicas, por lo que muchos productores son conscientes de la problemática y están estudiando el desarrollo de diversas alternativas. A nivel político global existen dos tipos de actuaciones para limitar el cambio climático, la mitigación (reducción de las emisiones de gases de efecto invernadero –GEI–) y la adaptación (medidas para reducir los impactos, riesgo de daños y la vulnerabilidad al cambio climático). Es indudable que el sector vitivinícola debe limitar sus emisiones de gases de efecto invernadero para contribuir a la mitigación del cambio climático. Este artículo trata del papel que puede tener la viticultura en la reducción de emisiones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El artículo repasa sintéticamente las fases que han caracterizado la paulatina convergencia entre las propuestas sucesivas de renovación urbana y los enfoques derivados del paradigma ecológico hasta el momento actual, en que la crisis económica global ha contribuido a situar en primer plano el concepto de regeneración urbana integral y la necesidad de un cambio en el modelo urbano-territorial. Apunta algunas de las dificultades a las que se enfrenta la puesta en práctica del enfoque ecológico en la regeneración urbana, debidas principalmente a que pone en cuestión las premisas de un modelo inmobiliario basado en el consumo de suelo y recursos y opera en un entorno disciplinar y político lastrado aún por las visiones sectoriales y por una concepción reduccionista de lo ambiental. Finalmente, propone algunas directrices generales para el cambio basadas en la aplicación decidida del nuevo paradigma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Para entender el papel actual de la agricultura urbana (AU) es necesaria una revisión histórica de sus funciones y características en la ciudad occidental, estudiando los motivos de su implantación, su sentido, evolución y potencialidades. Los momentos de mayor auge de la AU están ligados a crisis económicas y energéticas, que obligan a recurrir a ella para asegurar el autoabastecimiento. En los inicios de la ciudad industrial del XIX la AU cumple funciones de subsistencia, higiene y control social. En países como Gran Bretaña, Alemania o Francia las autoridades locales y las grandes fábricas se ven obligadas a ofrecer terrenos a los trabajadores para completar sus recursos y mejorar las condiciones de vida en los barrios obreros. En la primera mitad del siglo XX la AU aparece ligada a las guerras mundiales, su función es de subsistencia y patriótica, de apoyo a la economía de guerra y a los procesos de posguerra. Se desarrollan programas gubernamentales y campañas de fomento de la AU, como Dig for Victory en Gran Bretaña, o Victory Gardens en Estados Unidos. A partir de los años 70 los proyectos de AU cumplen funciones de desarrollo local, integración social y educación ambiental, y son lideradas por organizaciones comunitarias y ecologistas. En el momento actual la AU tiene la potencialidad de ser un instrumento de mejora ambiental y social, colaborando en la sostenibilidad urbana, la lucha contra el cambio climático, la calidad de vida y la creación de ciudades a escala humana. Palabras clave: rehabilitación urbana, autonomía alimentaria, metabolismo urbano, calidad de vida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El ciclo hidrológico proporciona anualmente 110,000 Km3 en forma de precipitaciones de lluvia y nieve (L'Vovich et al., 1990). Globalmente, el 37% de esas precipitaciones se destina a alimentar ríos, acuíferos, lagos y otros sistemas acuáticos, mientras que el 63% restante, se almacena en la reserva de agua del suelo y contribuye a mantener la productividad primaria de los sistemas agrícolas y forestales. Según las distintas estimaciones, el volumen de agua que actualmente se extrae de los sistemas acuáticos para uso humano a escala global varía entre 3100 y 4400 Km3 (Postel et al., 1996; Rosegrant et al., 2002; Falkenmark y Rockström, 2004; Oki y Kanae 2006; Gleick et al., 2008). Teniendo en cuenta que la cantidad de agua que puede ser captada de forma sostenible de estos sistemas es de aproximadamente 10.200 Km3 (Postel et al., 1996), la apropiación actual de este recurso representa en torno al 31 y 44%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El proyecto se centra en el cálculo de las emisiones de CO2 en una empresa, agrupando estas emisiones en los alcances 1 y 2 partiendo del consumo de combustibles fósiles y energía eléctrica respectivamente. Analizar los resultados y elaborar un plan con una serie de medidas generales para reducir las emisiones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La Rehabilitación ecológica y bioclimatica de la ciudad consolidada .- Los condicionantes urbanos frente a la rehabilitación .- Alcance de la rehabilitación ecológica y bioclimática de un barrio .- Condiciones intrínsecas derivadas de la morfología urbana .- Condiciones extrínsecos: derivados del microclima exterior y de la isla térmica urbana .- La rehabilitación del espacio público de la ciudad consolidada .- El Plan Especial de recuperación del espacio público de Moratalaz .- La problemática del espacio público en la ciudad de bloque abierto. .- Diagnosis DAFO de la problemática .- La metodología del plan especial .- Enumeración de las propuestas más sobresalientes .- la innovación en la gestión del suelo de espacios públicos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este artículo describe un análisis de huella de carbono (Carbon Footprint) desarrollado para la valoración, desde un punto de vista ambiental, del empleo de RAP (Reclaimed Asphalt Pavement) en la fabricación y puesta en obra de mezclas asfálticas en caliente. El análisis se ha llevado a cabo de forma específica para materiales asfálticos a partir de una metodología de análisis de ciclo de vida (ACV) que ha considerado como unidad funcional la tonelada de mezcla asfáltica fabricada y colocada en obra, y como ecoindicador el kilogramo de CO2 equivalente. La metodología presentada, además de basarse en datos de consumos y emisiones reales, considera dos aspectos fundamentales desde el punto de vista ambiental: la durabilidad y la reciclabilidad de las soluciones estudiadas. Por último, se exponen los resultados obtenidos con la aplicación de esta metodología a distintos tipos de mezclas asfálticas recicladas y a otras producidas mediante el reciclado de mezclas asfálticas con elevado contenido de caucho de neumáticos fuera de uso.