2 resultados para Hot-rolled steel

em Universidad Politécnica de Madrid


Relevância:

90.00% 90.00%

Publicador:

Resumo:

La durabilidad de las estructuras de hormigón armado no es ilimitada, en especial en determinados ambientes. El ingreso de agentes agresivos en el hormigón, fundamentalmente dióxido de carbono e iones cloruros, rebasando el espesor del recubrimiento y alcanzando las armaduras, reducen el alto pH del hormigón hasta alcanzar un umbral crítico, por debajo del cual, el acero queda despasivado. Posteriormente, si existe el suficiente aporte de humedad y oxígeno, el acero se corroe, lo que supone drásticas reducciones de la vida de servicio de estas estructuras y su inevitable reparación. La utilización de armaduras de acero inoxidable es una alternativa que está recibiendo cada vez más consideración. Su resistencia a la corrosión en los ambientes más agresivos, incluso con ataque de cloruros, lo convierte en el material idóneo para prolongar de forma muy considerable la vida útil de la estructura. En este trabajo se ha evaluado el comportamiento mecánico y estructural, y de resistencia a la corrosión, de un nuevo acero inoxidable dúplex de bajo contenido en níquel, el EN 1.4482 (AISI 2001), y se ha comparado con el inoxidable austenítico más utilizado, el EN 1.4301 (AISI 304), con el dúplex EN 1.4362 (AISI 2304) y con el tradicional acero al carbono B-500-SD. El estudio mecánico y estructural se ha realizado en tres niveles diferentes: a nivel de barra, estudiando las propiedades mecánicas y de ductilidad de los cuatro aceros citados; a nivel de sección, estudiando su comportamiento a flexión con diferentes cuantías de armado por medio de los diagramas momento-curvatura; y a nivel de pieza, ensayando una serie de vigas armadas con diferentes aceros y cuantías, y comprobando su comportamiento a desplazamiento y resistencia por medio de los diagramas carga-desplazamiento. El estudio de resistencia a la corrosión se ha realizado embebiendo barras corrugadas, de los tres aceros inoxidables mencionados, en probetas de mortero contaminadas con diferentes cantidades de cloruros, y realizando mediciones electroquímicas durante un periodo de al menos un año. Se han preparado probetas de mortero para dos comparativas diferentes. La primera, manteniendo las probetas en un desecador con el 95 % de humedad relativa durante todo el periodo de mediciones. La segunda, sumergiendo parcialmente las probetas en una solución tampón para carbonatar el mortero. Los resultados de los ensayos mecánicos han demostrado dos aspectos diferentes. Uno, que las armaduras de acero inoxidable tienen un comportamiento muy similar a las de acero al carbono en lo referente a las resistencias alcanzadas, en el límite elástico y en rotura, pero distinto en cuanto al módulo de deformación longitudinal, cuyo valor es claramente inferior al del acero al carbono, por lo que su utilización en las estructuras de hormigón necesita tener en cuenta ese dato en los análisis lineales de cálculo. El segundo aspecto es que las armaduras de acero inoxidable laminadas en caliente presentan una ductilidad muy superior a las de acero al carbono, por lo que ofrecen una mayor seguridad frente a su rotura o al colapso de la estructura, lo que se debe tener en cuenta en el análisis de cálculo plástico. En cambio, las armaduras de acero inoxidable laminadas en frío sólo cumplen con los límites mínimos de ductilidad establecidos en la instrucción EHE-08 para los aceros soldables, y no para los aceros con características especiales de ductilidad. El estudio a nivel de sección refleja la paradoja de obtener secciones menos dúctiles con las armaduras de acero inoxidable laminadas en caliente que con las armaduras de acero al carbono. Para subsanarlo, se definen los conceptos de curvatura última de rotura y ductilidad de la sección en rotura, que tienen en cuenta las altas deformaciones alcanzadas por las armaduras de acero inoxidable. Los resultados a nivel de pieza permiten identificar el comportamiento estructural del hormigón armado con barras corrugadas de acero inoxidable y compararlo con el de las estructuras de hormigón armado convencionales, verificando los resultados experimentales con los teóricos obtenidos con la formulación recogida en la instrucción EHE- 08. Los ensayos de resistencia a la corrosión por cloruros demuestran, durante el primer año y medio de vida de las probetas, un comportamiento muy similar entre el nuevo acero inoxidable dúplex bajo en níquel y el austenítico y el dúplex utilizados para la comparación, incluso para las probetas carbonatadas. Por último, se añade una comparativa económica, realizada sobre dos edificaciones tipo, para cuantificar el sobrecoste que supone la utilización de armaduras de acero inoxidable respecto a las de acero al carbono. El alto coste inicial de las armaduras de acero inoxidable se ve compensado en el coste final de la estructura de muy diferentes formas, principalmente dependiendo del grado de acero elegido y de si se emplean en el total de la estructura o solamente en los elementos más expuestos. The durability of the concrete structures is limited, especially in certain environments. The attack of aggressive agents in the concrete, mainly carbon dioxide and chloride ions, penetrating the thickness of concrete cover and reaching the reinforcements, reduce the high pH of concrete to the point of reaching a critical threshold, under which, the steel despasivates. Therefore, if there is enough humidity and oxygen, the steel corroes, causing drastic reductions in the service life of these structures and its inevitable repair. Despite the high initial cost compared to carbon steel, the usage of stainless steel reinforcements is an alternative with a major consideration nowadays. Its resistance to corrosion in the most aggressive atmospheres, including chlorides attack, makes the stainless steel a suitable material to extend considerably its lifetime. In this study, it’s been evaluated the mechanical and structural behaviour, and the corrosion resistance, of a new low-nickel duplex stainless steel EN 1.4482 (AISI 2001), and it has been compared with the most widely used austenitic type EN 1.4301 (AISI 304), with duplex steel EN 1.4362 (AISI 2304) and with the traditional carbon steel B-500-SD. The mechanical and structural study has been carried out in three different levels: bar level, studying mechanical properties and ductility of the four steels; section level, studying its behaviour when blending with different amounts of reinforcement through the moment-curvature diagrams; and structural element level, testing a series of reinforced beams with different steels and amounts, and checking its sag and resistance through the load-deflection diagrams. The corrosion resistance study was performed by embedding ribbed bars, using the three stainless steel listed, on mortar specimens contaminated with different amounts of chlorides, and taking electrochemical measurements over a period of at least one year. Mortar specimens have been prepared for two different comparisons. The first, keeping the specimens at 95% of relative humidity during the measurement period. The second, immersing the specimens partially in a carbonate buffer solution. The results of those tests have proved two different aspects. Firstly, that stainless steel reinforcements show a very similar behaviour to carbon steel, according to the reached levels of mechanical resistance, yield stress and steel strength, but a different behaviour in Young’s modulus, which value is clearly lower than the carbon steel. Therefore, when using in concrete structures it is need to consider on that point the existing calculus of linear analysis. The second aspect is that stainless steel reinforcement manufactured by hot-rolling process show a very higher ductility than carbon steel, offering a better security on cracks or structure collapse, which it has to be taken into account on plastic calculus analysis. However, the stainless steel reinfor9 cement cold-rolled bars only meet the minimum thresholds of ductility established by EHE-08 for welded steel, and not for steels with special ductility. The results at the section level reflect the paradox of getting less ductile sections with hot rolled stainless steel reinforcement than with carbon steel reinforcements. To overcome that, the concepts of last break curvature and break ductility section have been defined, which take into account the high deformation value achieved by stainless steel reinforcements. The results at the structural element level allow to identify the structural behaviour of reinforced concrete with stainless steel reinforcements and compared with that of conventional steel reinforcement, contrasting the experimental with the theoretical results obtained from the formulation contained in the instruction EHE-08. Tests on resistance of chloride corrosion show during the first year and a half of specimens life, a similar behaviour between the new low nickel duplex stainless steel and austenitic and duplex used for comparison, even for carbonated specimens. Finally, it has been included an economic comparison on two differents building types, to quantify the additional cost involved on the use of stainless steel reinforcement compared to that of carbon steel. The high initial cost of stainless steel reinforcements is offset in the final cost of the structure in many different ways, mainly depending on the chosen steel grade and whether the reinforcement is used in the total structure or only in risky structural elements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Es en el campo de los recursos naturales y su aplicación a la industria, el entorno donde se desarrolla esta Tesis. El objetivo de la misma es demostrar cómo la minería del hierro puede resultar una actividad sostenible, logrando continuar de esta manera la estrecha relación de siempre entre las necesidades del hombre y la pervivencia de los recursos naturales. Es en la minería del hierro donde hace mayor énfasis este trabajo, dando lugar a un nuevo Indicador Sostenible que intenta evaluar las explotaciones de mineral de hierro desde una visión sostenible, empleando el consumo energético y las emisiones de CO2 como principales herramientas. Como se observa en el día a día, el tema de la sostenibilidad es de plena actualidad, lográndose en este trabajo implicar, tanto a la eficiencia energética, como al control de emisiones de gases efecto invernadero; ambas herramientas cobran más importancia cada día que pasa. La Tesis se desarrolla en 5 capítulos, aparte de su bibliografía correspondiente. En el primer capítulo se introduce el sentido de la sostenibilidad, desde sus inicios conceptuales, hasta sus actuales clasificaciones y definiciones empleadas; todo ello desde el punto de vista de los recursos naturales, y más habitualmente desde la minería. Resulta llamativo el contraste de opiniones, en lo que se ha dado a llamar la paradoja de la minería sostenible, quedando tras su lectura, la posición de la minería en una situación, si no ventajosa, si de equilibrio en importancia entre las necesidades a cubrir y el agotamiento de recursos. El segundo capítulo nos muestra el entorno donde se va a conducir la Tesis. El marco que engloba este trabajo se extiende desde la extracción del mineral de hierro (minería), su tratamiento y concentración (mineralurgia), su venta a los hornos altos (mercados) hasta su posterior fabricación en acero terminado (siderurgia). En este capítulo se presentan los principales actores que entrarán en el sector de la minería del hierro (productores y fabricantes) incluyendo una serie de datos estadísticos de gran interés para el desarrollo de la Tesis. El tercer capítulo se refiere al proceso completo que precisa la actividad sobre la que se va a evaluar la sostenibilidad. Es donde se definen, paso a paso, y obteniendo todos los datos de consumos energéticos y emisiones de CO2, las diferentes etapas por las que pasa el mineral de hierro, hasta encontrarse laminado en la acería. Es aquí donde se analizan los diversos tipos de yacimientos de hierro dispersos por el mundo y el mineral extraído, de manera que las propiedades aprendidas se puedan emplear más adelante en un indicador, y que así diferencie la sostenibilidad en función de los orígenes motivo de las necesidades energéticas para su transformación. El capítulo 4 consta de dos bloques: el uso de las herramientas de medida de la sostenibilidad, a día de hoy en el mundo industrial, y de una manera pormenorizada, el consumo energético y sus emisiones medioambientales como herramienta de gestión ambiental para la minería del hierro. Esta herramienta resultará básica para el cálculo del indicador buscado para la medida de la sostenibilidad. El capítulo 5 constituye el núcleo de la tesis, y supone el desarrollo del indicador, la metodología de uso y las conclusiones obtenidas. A través de varios ejemplos se logra entender la aplicación del indicador, dando lugar a una clasificación sostenible sencilla y práctica, situando en orden las diferentes explotaciones en función de un nivel de sostenibilidad determinado. Este último capítulo da origen al Indicador Sostenible Energético buscado, mostrándose en todo su esplendor y descubriendo cómo la relación ponderada entre el consumo energético y sus emisiones de CO2 permite, a través de una valoración, mostrar todos los parámetros de relevancia para el mineral de hierro y su posterior transformación en acero. Esa cifra obtenida por el indicador, clasificará la explotación teniendo en cuenta, el tipo de yacimiento, características del mineral (especie mineralógica, tipo de mineral, ley del mineral en hierro, tipo de ganga, características físicas como dureza o tamaño de grano, susceptibilidad magnética, etc.), situación geográfica, infraestructuras, etc. Sin profundizar en la siderurgia, por lo menos sí incluir los principales parámetros (relacionados siempre desde el mineral) que pudieran tener influencia en la disminución de energía requerida (y sus emisiones de CO2 relacionadas): la reducibilidad, el contenido en hierro, y mencionar la influencia del SiO2. Se completa la Tesis con las referencias bibliográficas y documentales, así como con una bibliografía general. ABSTRACT This Thesis is set in a context of natural resources and applied science. The aim of this document is to prove that iron mining is a sustainable activity, so the ancient relationship between men and natural resources will continue. Iron mining is the main subject of this work, so a new sustainable indicator is created in order to evaluate the iron mining from a sustainable point of view. The main tools applied are energy consumption and CO2 emissions. In this research document two relevant issues are involved: energy efficiency and GHGs control; both tools gain significance by the day. This thesis develops along 5 chapters and its bibliography. The first chapter refers to the concept of sustainability, from the beginning to the current definitions and classifications; all this information is focused from the natural resources point of view, especially mining. The contrast of opinion is remarkable, which has been called the “paradox of sustainable mining”; however this chapter concludes that taking into account the less bright side of the mining its activity maintains an important balance between necessities to cover, available resources and environment. The second chapter sets out where this Thesis has been conducted. The frame of this work lies between iron mining, ore processing, the market and the latter steel fabrication (steelmaking). This chapter shows the iron mining key stakeholders, supported with statistical data. The third chapter refers to the whole process definition. From the iron mineral to the rolled steel, all data related with energy consumption and CO2 emissions are considered step by step. Different iron deposits widespread all over the world are analyzed now, as well as the exploited iron mineral in order to apply the lessons learned to create a new sustainability tool. Then, our sustainability studies will consider the influence of this in the energy necessities when iron is transformed. Chapter four is divided in the currently applied sustainability measurement tools, and focusing on energy consumption and CO2 emissions linked to the iron mining process. This tool is essential to calculate the required indicator that reflects the sustainability. Chapter five is the Thesis’ core: it is where the new sustainable indicator is developed, the methodology stated and the final conclusions obtained. Through several examples the indicator application is explained, and a practical and simple sustainable classification will show the ranking of every exploitation. This last chapter develops the sustainable tool and discovers how the weighted relation between energy consumption and CO2 emissions allows understanding all the relevant parameters in the iron mineral transformation. The number calculated will be used to classify the mineral exploitation, taking into account the deposit typology, mineral characteristics (mineralogy, type of mineral, iron percentage, physical properties as hardness or grain size, magnetic susceptibility, etc.), geographic situation, infrastructures, etc. Although steelmaking is not studied in depth, main parameters (from the mineral side) which can operate in the energy decrease (and CO2 emissions in parallel) are referred to: reducibility, iron content and SiO2 influence. The bibliography used is included at the end of this paper.