9 resultados para Host plants.

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pathogenicity of seven strains of Fusarium equiseti isolated from seabed soil was evaluated on different host plants showing pre and post emergence damage. Radial growth of 27 strains was measured on culture media previously adjusted to different osmotic potentials with either KCl or NaCl (-1.50 to - 144.54 bars) at 15º, 25º and 35º C. Significant differences and interactive effects were observed in the response of mycelia to osmotic potential and temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acylamidohydrolases from higher plants have not been characterized or cloned so far. AtAMI1 is the first member of this enzyme family from a higher plant and was identified in the genome of Arabidopsis thaliana based on sequence homology with the catalytic-domain sequence of bacterial acylamidohydrolases, particularly those that exhibit indole-3-acetamide amidohydrolase activity. AtAMI1 polypeptide and mRNA are present in leaf tissues, as shown by immunoblotting and RT-PCR, respectively. AtAMI1 was expressed from its cDNA in enzymatically active form and exhibits substrate specificity for indole-3-acetamide, but also some activity against l-asparagine. The recombinant enzyme was characterized further. The results show that higher plants have acylamidohydrolases with properties similar to the enzymes of certain plant-associated bacteria such as Agrobacterium-, Pseudomonas- and Rhodococcus-species, in which these enzymes serve to synthesize the plant growth hormone, indole-3-acetic acid, utilized by the bacteria to colonize their host plants. As indole-3-acetamide is a native metabolite in Arabidopsis thaliana, it can no longer be ruled out that one pathway for the biosynthesis of indole-3-acetic acid involves indole-3-acetamide-hydrolysis by AtAMI1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soft-rot Enterobacteriaceae (SRE), which belong to the genera Pectobacterium and Dickeya, consist mainly of broad host-range pathogens that cause wilt, rot, and blackleg diseases on a wide range of plants. They are found in plants, insects, soil, and water in agricultural regions worldwide. SRE encode all six known protein secretion systems present in gram-negative bacteria, and these systems are involved in attacking host plants and competing bacteria. They also produce and detect multiple types of small molecules to coordinate pathogenesis, modify the plant environment, attack competing microbes, and perhaps to attract insect vectors. This review integrates new information about the role protein secretion and detection and production of ions and small molecules play in soft-rot pathogenicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Actualmente, la gestión de sistemas de Manejo Integrado de Plagas (MIP) en cultivos hortícolas tiene por objetivo priorizar los métodos de control no químicos en detrimento del consumo de plaguicidas, según recoge la directiva europea 2009/128/CE ‘Uso Sostenible de Plaguicidas’ (OJEC, 2009). El uso de agentes de biocontrol como alternativa a la aplicación de insecticidas es un elemento clave de los sistemas MIP por sus innegables ventajas ambientales que se utiliza ampliamente en nuestro país (Jacas y Urbaneja, 2008). En la región de Almería, donde se concentra el 65% de cultivo en invernadero de nuestro país (47.367 ha), MIP es la principal estrategia en pimiento (MAGRAMA, 2014), y comienza a serlo en otros cultivos como tomate o pepino. El cultivo de pepino, con 8.902 ha (MAGRAMA, 2013), tiene un protocolo semejante al pimiento (Robledo et al., 2009), donde la única especie de pulgón importante es Aphis gossypii Glover. Sin embargo, pese al continuo incremento de la superficie de cultivo agrícola bajo sistemas MIP, los daños originados por virosis siguen siendo notables. Algunos de los insectos presentes en los cultivos de hortícolas son importantes vectores de virus, como los pulgones, las moscas blancas o los trips, cuyo control resulta problemático debido a su elevada capacidad para transmitir virus vegetales incluso a una baja densidad de plaga (Holt et al., 2008; Jacas y Urbaneja, 2008). Las relaciones que se establecen entre los distintos agentes de un ecosistema son complejas y muy específicas. Se ha comprobado que, pese a que los enemigos naturales reducen de manera beneficiosa los niveles de plaga, su incorporación en los sistemas planta-insecto-virus puede desencadenar complicadas interacciones con efectos no deseables (Dicke y van Loon, 2000; Jeger et al., 2011). Así, los agentes de biocontrol también pueden inducir a que los insectos vectores modifiquen su comportamiento como respuesta al ataque y, con ello, el grado de dispersión y los patrones de distribución de las virosis que transmiten (Bailey et al., 1995; Weber et al., 1996; Hodge y Powell, 2008a; Hodge et al., 2011). Además, en ocasiones el control biológico por sí solo no es suficiente para controlar determinadas plagas (Medina et al., 2008). Entre los métodos que se pueden aplicar bajo sistemas MIP están las barreras físicas que limitan la entrada de plagas al interior de los invernaderos o interfieren con su movimiento, como pueden ser las mallas anti-insecto (Álvarez et al., 2014), las mallas fotoselectivas (Raviv y Antignus, 2004; Weintraub y Berlinger, 2004; Díaz y Fereres, 2007) y las mallas impregnadas en insecticida (Licciardi et al., 2008; Martin et al., 2014). Las mallas fotoselectivas reducen o bloquean casi por completo la transmisión de radiación UV, lo que interfiere con la visión de los insectos y dificulta o impide la localización del cultivo y su establecimiento en el mismo (Raviv y Antignus, 2004; Weintraub, 2009). Se ha comprobado cómo su uso puede controlar los pulgones y las virosis en cultivo de lechuga (Díaz et al., 2006; Legarrea et al., 2012a), así como la mosca blanca, los trips y los ácaros, y los virus que estos transmiten en otros cultivos (Costa y Robb, 1999; Antignus et al., 2001; Kumar y Poehling, 2006; Doukas y Payne, 2007a; Legarrea et al., 2010). Sin embargo, no se conoce perfectamente el modo de acción de estas barreras, puesto que existe un efecto directo sobre la plaga y otro indirecto mediado por la planta, cuya fisiología cambia al desarrollarse en ambientes con falta de radiación UV, y que podría afectar al ciclo biológico de los insectos fitófagos (Vänninen et al., 2010; Johansen et al., 2011). Del mismo modo, es necesario estudiar la compatibilidad de esta estrategia con los enemigos naturales de las plagas. Hasta la fecha, los estudios han evidenciado que los agentes de biocontrol pueden realizar su actividad bajo ambientes pobres en radiación UV (Chyzik et al., 2003; Chiel et al., 2006; Doukas y Payne, 2007b; Legarrea et al., 2012c). Otro método basado en barreras físicas son las mallas impregnadas con insecticidas, que se han usado tradicionalmente en la prevención de enfermedades humanas transmitidas por mosquitos (Martin et al., 2006). Su aplicación se ha ensayado en agricultura en ciertos cultivos al aire libre (Martin et al., 2010; Díaz et al., 2004), pero su utilidad en cultivos protegidos para prevenir la entrada de insectos vectores en invernadero todavía no ha sido investigada. Los aditivos se incorporan al tejido durante el proceso de extrusión de la fibra y se liberan lentamente actuando por contacto en el momento en que el insecto aterriza sobre la malla, con lo cual el riesgo medioambiental y para la salud humana es muy limitado. Los plaguicidas que se emplean habitualmente suelen ser piretroides (deltametrina o bifentrín), aunque también se ha ensayado dicofol (Martin et al., 2010) y alfa-cipermetrina (Martin et al., 2014). Un factor que resulta de vital importancia en este tipo de mallas es el tamaño del poro para facilitar una buena ventilación del cultivo, al tiempo que se evita la entrada de insectos de pequeño tamaño como las moscas blancas (Bethke y Paine, 1991; Muñoz et al., 1999). Asimismo, se plantea la necesidad de estudiar la compatibilidad de estas mallas con los enemigos naturales. Es por ello que en esta Tesis Doctoral se plantea la necesidad de evaluar nuevas mallas impregnadas que impidan el paso de insectos de pequeño tamaño al interior de los invernaderos, pero que a su vez mantengan un buen intercambio y circulación de aire a través del poro de la malla. Así, en la presente Tesis Doctoral, se han planteado los siguientes objetivos generales a desarrollar: 1. Estudiar el impacto de la presencia de parasitoides sobre el grado de dispersión y los patrones de distribución de pulgones y las virosis que éstos transmiten. 2. Conocer el efecto directo de ambientes pobres en radiación UV sobre el comportamiento de vuelo de plagas clave de hortícolas y sus enemigos naturales. 3. Evaluar el efecto directo de la radiación UV-A sobre el crecimiento poblacional de pulgones y mosca blanca, y sobre la fisiología de sus plantas hospederas, así como el efecto indirecto de la radiación UV-A en ambas plagas mediado por el crecimiento de dichas planta hospederas. 4. Caracterización de diversas mallas impregnadas en deltametrina y bifentrín con diferentes propiedades y selección de las óptimas para el control de pulgones, mosca blanca y sus virosis asociadas en condiciones de campo. Estudio de su compatibilidad con parasitoides. ABSTRACT Insect vectors of plant viruses are the main agents causing major economic losses in vegetable crops grown under protected environments. This Thesis focuses on the implementation of new alternatives to chemical control of insect vectors under Integrated Pest Management programs. In Spain, biological control is the main pest control strategy used in a large part of greenhouses where horticultural crops are grown. The first study aimed to increase our knowledge on how the presence of natural enemies such as Aphidius colemani Viereck may alter the dispersal of the aphid vector Aphis gossypii Glover (Chapter 4). In addition, it was investigated if the presence of this parasitoid affected the spread of aphid-transmitted viruses Cucumber mosaic virus (CMV, Cucumovirus) and Cucurbit aphid-borne yellows virus (CABYV, Polerovirus) infecting cucumber (Cucumis sativus L). SADIE methodology was used to study the distribution patterns of both the virus and its vector, and their degree of association. Results suggested that parasitoids promoted aphid dispersal in the short term, which enhanced CMV spread, though consequences of parasitism suggested potential benefits for disease control in the long term. Furthermore, A. colemani significantly limited the spread and incidence of the persistent virus CABYV in the long term. The flight activity of pests Myzus persicae (Sulzer), Bemisia tabaci (Gennadius) and Tuta absoluta (Meyrick), and natural enemies A. colemani and Sphaerophoria rueppellii (Weidemann) under UV-deficient environments was studied under field conditions (Chapter 5). One-chamber tunnels were covered with cladding materials with different UV transmittance properties. Inside each tunnel, insects were released from tubes placed in a platform suspended from the ceiling. Specific targets were located at different distances from the platform. The ability of aphids and whiteflies to reach their targets was diminished under UV-absorbing barriers, suggesting a reduction of vector activity under this type of nets. Fewer aphids reached distant traps under UV-absorbing nets, and significantly more aphids could fly to the end of the tunnels covered with non-UV blocking materials. Unlike aphids, differences in B. tabaci captures were mainly found in the closest targets. The oviposition of lepidopteran T. absoluta was also negatively affected by a UV-absorbing cover. The photoselective barriers were compatible with parasitism and oviposition of biocontrol agents. Apart from the direct response of insects to UV radiation, plant-mediated effects influencing insect performance were investigated (Chapter 6). The impact of UV-A radiation on the performance of aphid M. persicae and whitefly B. tabaci, and growth and leaf physiology of host plants pepper and eggplant was studied under glasshouse conditions. Plants were grown inside cages covered by transparent and UV-A-opaque plastic films. Plant growth and insect fitness were monitored. Leaves were harvested for chemical analysis. Pepper plants responded directly to UV-A by producing shorter stems whilst UV-A did not affect the leaf area of either species. UV-A-treated peppers had higher content of secondary metabolites, soluble carbohydrates, free amino acids and proteins. Such changes in tissue chemistry indirectly promoted aphid performance. For eggplants, chlorophyll and carotenoid levels decreased with supplemental UVA but phenolics were not affected. Exposure to supplemental UV-A had a detrimental effect on whitefly development, fecundity and fertility presumably not mediated by plant cues, as compounds implied in pest nutrition were unaltered. Lastly, the efficacy of a wide range of Long Lasting Insecticide Treated Nets (LLITNs) was studied under laboratory and field conditions. This strategy aimed to prevent aphids and whiteflies to enter the greenhouse by determining the optimum mesh size (Chapter 7). This new approach is based on slow release deltamethrin- and bifenthrin-treated nets with large hole sizes that allow improved ventilation of greenhouses. All LLITNs produced high mortality of M. persicae and A. gossypii although their efficacy decreased over time with sun exposure. It was necessary a net with hole size of 0.29 mm2 to exclude B. tabaci under laboratory conditions. The feasibility of two selected nets was studied in the field under a high insect infestation pressure in the presence of CMV- and CABYV-infected cucumber plants. Besides, the compatibility of parasitoid A. colemani with bifenthrin-treated nets was studied in parallel field experiments. Both nets effectively blocked the invasion of aphids and reduced the incidence of both viruses, however they failed to exclude whiteflies. We found that our LLITNs were compatible with parasitoid A. colemani. As shown, the role of natural enemies has to be taken into account regarding the dispersal of insect vectors and subsequent spread of plant viruses. The additional benefits of novel physicochemical barriers, such as photoselective and insecticide-impregnated nets, need to be considered in Integrated Pest Management programs of vegetable crops grown under protected environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rhizobium leguminosarum bv. viciae establishes root nodule symbioses with several legume genera. Although most isolates are equally effective in establishing symbioses with all host genera, previous evidence suggests that hosts select specific rhizobial genotypes among those present in the soil. We have used population genomics to further investigate this observation. P. sativum, L. culinaris, V. sativa, and V. faba plants were used to trap rhizobia from a well-characterized soil, and pooled genomic DNAs from one-hundred isolates from each plant were sequenced. Sequence reads were aligned to the R. leguminosarum bv. viciae 3841 reference genome. High overall conservation of sequences was observed in all subpopulations, although several multigenic regions were absent from the soil population. A large fraction (16-22%) of sequence reads could not be recruited to the reference genome, suggesting that they represent sequences specific to that particular soil population. Although highly conserved, the 16S-23S rRNA gene region presented single nucleotide polymorphisms (SNPs) regarding the reference genome, but no striking differences could be found among plant-selected subpopulations. Plant-specific SNP patterns were, however, clearly observed within the nod gene cluster, supporting the existence of a plant preference for specific rhizobial genotypes. This was also shown after genome-wide analysis of SNP patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rhizobium leguminosarum bv.viciae is able to establish nitrogen-fixing symbioses with legumes of the genera Pisum, Lens, Lathyrus and Vicia. Classic studies using trap plants (Laguerre et al., Young et al.) provided evidence that different plant hosts are able to select different rhizobial genotypes among those available in a given soil. However, these studies were necessarily limited by the paucity of relevant biodiversity markers. We have now reappraised this problem with the help of genomic tools. A well-characterized agricultural soil (INRA Bretennieres) was used as source of rhizobia. Plants of Pisum sativum, Lens culinaris, Vicia sativa and V. faba were used as traps. Isolates from 100 nodules were pooled, and DNA from each pool was sequenced (BGI-Hong Kong; Illumina Hiseq 2000, 500 bp PE libraries, 100 bp reads, 12 Mreads). Reads were quality filtered (FastQC, Trimmomatic), mapped against reference R. leguminosarum genomes (Bowtie2, Samtools), and visualized (IGV). An important fraction of the filtered reads were not recruited by reference genomes, suggesting that plant isolates contain genes that are not present in the reference genomes. For this study, we focused on three conserved genomic regions: 16S-23S rDNA, atpD and nodDABC, and a Single Nucleotide Polymorphism (SNP) analysis was carried out with meta / multigenomes from each plant. Although the level of polymorphism varied (lowest in the rRNA region), polymorphic sites could be identified that define the specific soil population vs. reference genomes. More importantly, a plant-specific SNP distribution was observed. This could be confirmed with many other regions extracted from the reference genomes (data not shown). Our results confirm at the genomic level previous observations regarding plant selection of specific genotypes. We expect that further, ongoing comparative studies on differential meta / multigenomic sequences will identify specific gene components of the plant-selected genotypes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most Rhizobium leguminosarum bv. viciae isolates are able to specifically nodulate plants of any of four different legume genera: Pisum, Lens, Vicia, and Lathyrus. However, previous evidence suggests that some genotypes are more adapted to a given plant host than others, and that the plant host can select specific genotypes among those present in a given soil population. We have used a population genomics approach to confirm that this is indeed the case, and to analyze the specific genotypic characteristics that each plant host selects

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Legumes establish a root-nodule symbiosis with soil bacteria collectively known as rhizobia. This symbiosis allows legumes to benefit from the nitrogen fixation capabilities of rhizobia and thus to grow in the absence of any fixed nitrogen source. This is especially relevant for Agriculture, where intensive plant growth depletes soils of useable, fixed nitrogen sources. One of the main features of the root nodule symbiosis is its specificity. Different rhizobia are able to nodulate different legumes. Rhizobium leguminosarum bv. viciae is able to establish an effective symbiosis with four different plant genera (Pisum, Lens, Vicia, Lathyrus), and any given isolate will nodulate any of the four plant genera. A population genomics study with rhizobia isolated from P. sativum, L. culinaris, V. sativa or V. faba, all originating in the same soil, showed that plants select specific genotypes from those available in that soil. This was demonstrated at the genome-wide level, but also for specific genes. Accelerated mesocosm studies with successive plant cultures provided additional evidence on this plant selection and on the nature of the genotypes selected. Finally, representatives from the major rhizobial genotypes isolated from these plants allowed characterization of the size and nature of the respective pangenome and specific genome compartments. These were compared to the different genotypes ?symbiotic and non-symbiotic?present in rhizobial populations isolated directly from the soil without plant intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rhizobium leguminosarum bv viciae (Rlv) is a soil bacterium able to establish specific root-nodule symbioses with legumes of four different genera: Pisum, Vicia, Lens and Lathyrus. Rlv isolates from nodules of any of these legumes can nodulate any of them; however, it has been shown that plants select specific rhizobial genotypes from those present in the soil (1,2). We have previously shown this at the genomic level by following a population genomics approach. Pool genomic sequences from 100 isolates from each of four plant species: P. sativum, L. culinaris, V. faba and V. sativa, show different, specific profiles at the single nucleotide polymorphism (SNP) level for relevant genes. In this work, the extent of Rlv selection from a well-characterized soil population by different legume plant hosts: P. sativum, L. culinaris, V. faba and V. sativa, after a medium-term mesocosm study is described. Direct soil isolates from each of these mesocosm studies have been tested for specific rhizobial genes (glnII and fnrN) and symbiotic genes (nodC and nifH). Different populations were characterized further by Sanger sequencing of both the rpoB phylogenetic marker gene and the symbiotic genes nodC and nifH. The distribution and size of the rhizobial population for each legume host showed changes during the medium-term mesocosm study. Particularly, a non-symbiotic group of rhizobia was enriched by all four hosts, in contrast to the symbiotic rhizobia profile, which was specific for each legume plant host.