2 resultados para Hospital medical materials

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important objective of the INTEGRATE project1 is to build tools that support the efficient execution of post-genomic multi-centric clinical trials in breast cancer, which includes the automatic assessment of the eligibility of patients for available trials. The population suited to be enrolled in a trial is described by a set of free-text eligibility criteria that are both syntactically and semantically complex. At the same time, the assessment of the eligibility of a patient for a trial requires the (machineprocessable) understanding of the semantics of the eligibility criteria in order to further evaluate if the patient data available for example in the hospital EHR satisfies these criteria. This paper presents an analysis of the semantics of the clinical trial eligibility criteria based on relevant medical ontologies in the clinical research domain: SNOMED-CT, LOINC, MedDRA. We detect subsets of these widely-adopted ontologies that characterize the semantics of the eligibility criteria of trials in various clinical domains and compare these sets. Next, we evaluate the occurrence frequency of the concepts in the concrete case of breast cancer (which is our first application domain) in order to provide meaningful priorities for the task of binding/mapping these ontology concepts to the actual patient data. We further assess the effort required to extend our approach to new domains in terms of additional semantic mappings that need to be developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virtual reality (VR) techniques to understand and obtain conclusions of data in an easy way are being used by the scientific community. However, these techniques are not used frequently for analyzing large amounts of data in life sciences, particularly in genomics, due to the high complexity of data (curse of dimensionality). Nevertheless, new approaches that allow to bring out the real important data characteristics, arise the possibility of constructing VR spaces to visually understand the intrinsic nature of data. It is well known the benefits of representing high dimensional data in tridimensional spaces by means of dimensionality reduction and transformation techniques, complemented with a strong component of interaction methods. Thus, a novel framework, designed for helping to visualize and interact with data about diseases, is presented. In this paper, the framework is applied to the Van't Veer breast cancer dataset is used, while oncologists from La Paz Hospital (Madrid) are interacting with the obtained results. That is to say a first attempt to generate a visually tangible model of breast cancer disease in order to support the experience of oncologists is presented.