2 resultados para Hormigas

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pesar de los avances en materia de predicción, los desastres naturales siguen teniendo consecuencias devastadoras. Entre los principales problemas a los que se enfrentan los equipos de ayuda y rescate después de un desastre natural o provocado por el hombre se encuentra la planificación de las tareas de reparación de carreteras para conseguir la máxima ventaja de los limitados recursos económicos y humanos. En la presente Tesis Fin de Máster se intenta dar solución al problema de la accesibilidad, es decir, maximizar el número de supervivientes que consiguen alcanzar el centro regional más cercano en un tiempo mínimo mediante la planificación de qué carreteras rurales deberían ser reparadas dados unos recursos económicos y humanos limitados. Como se puede observar, es un problema combinatorio ya que el número de planes de reparación y conexiones entre las ciudades y los centros regionales crece de forma exponencial con el tamaño del problema. Para la resolución del problema se comienza analizando una adaptación básica de los sistemas de colonias de hormigas propuesta por otro autor y se proponen múltiples mejoras sobre la misma. Posteriormente, se propone una nueva adaptación más avanzada de los sistemas de colonias de hormiga al problema, el ACS con doble hormiga. Este sistema hace uso de dos tipos distintos de hormigas, la exploradora y la trabajadora, para resolver simultáneamente el problema de encontrar los caminos más rápidos desde cada ciudad a su centro regional más cercano (exploradora), y el de obtener el plan óptimo de reparación que maximice la accesibilidad de la red (trabajadora). El algoritmo propuesto se ilustra por medio de un ejemplo de gran tamaño que simula el desastre natural ocurrido en Haití, y su rendimiento es comparado con la combinación de dos metaheurísticas, GRASP y VNS.---ABSTRACT---In spite of the advances in forecasting, natural disaster continue to ocasionate devastating consequences. One of the main problems relief teams face after a natural or man-made disaster is how to plan rural road repair work to take maximum advantage of the limited available financial and human resources. In this Master´s Final Project we account for the accesability issue, that is, to maximize the number of survivors that reach the nearest regional center in a minimum time by planning whic rural roads should be repaired given the limited financial and human resources. This is a combinatorial problem since the number of possible repairing solutions and connections between cities and regional centers grows exponentially with the size of the problem. In order to solve the problem, we analyze the basic ant colony system adaptation proposed by another author and point out multiple improvements on it. Then, we propose a novel and more advance adaptation of the ant colony systems to the problem, the double- ant ACS. This system makes use of two diferent type of ants, the explorer and the worker, to simultaneously solve the problem of finding the shorthest paths from each city to their nearest regional center (explorer), and the problem of identifying the optimal repairing plan that maximize the network accesability (worker). The proposed algorithm is illustrated by means of a big size example that simulates the natural disaster occurred in Haiti, and its performance is compared with a combination of two metaheuristics, GRASP and VNS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La tesis está focalizada en la resolución de problemas de optimización combinatoria, haciendo uso de las opciones tecnológicas actuales que ofrecen las tecnologías de la información y las comunicaciones, y la investigación operativa. Los problemas de optimización combinatoria se resuelven en general mediante programación lineal y metaheurísticas. La aplicación de las técnicas de resolución de los problemas de optimización combinatoria requiere de una elevada carga computacional, y los algoritmos deben diseñarse, por un lado pensando en la efectividad para encontrar buenas soluciones del problema, y por otro lado, pensando en un uso adecuado de los recursos informáticos disponibles. La programación lineal y las metaheurísticas son técnicas de resolución genéricas, que se pueden aplicar a diferentes problemas, partiendo de una base común que se particulariza para cada problema concreto. En el campo del desarrollo de software, los frameworks cumplen esa función de comenzar un proyecto con el trabajo general ya disponible, con la opción de cambiar o extender ese comportamiento base o genérico, para construir el sistema concreto, lo que permite reducir el tiempo de desarrollo, y amplía las posibilidades de éxito del proyecto. En esta tesis se han desarrollado dos frameworks de desarrollo. El framework ILP permite modelar y resolver problemas de programación lineal, de forma independiente al software de resolución de programación lineal que se utilice. El framework LME permite resolver problemas de optimización combinatoria mediante metaheurísticas. Tradicionalmente, las aplicaciones de resolución de problemas de optimización combinatoria son aplicaciones de escritorio que permiten gestionar toda la información de entrada del problema y resuelven el problema en local, con los recursos hardware disponibles. Recientemente ha aparecido un nuevo paradigma de despliegue y uso de aplicaciones que permite compartir recursos informáticos especializados por Internet. Esta nueva forma de uso de recursos informáticos es la computación en la nube, que presenta el modelo de software como servicio (SaaS). En esta tesis se ha construido una plataforma SaaS, para la resolución de problemas de optimización combinatoria, que se despliega sobre arquitecturas compuestas por procesadores multi-núcleo y tarjetas gráficas, y dispone de algoritmos de resolución basados en frameworks de programación lineal y metaheurísticas. Toda la infraestructura es independiente del problema de optimización combinatoria a resolver, y se han desarrollado tres problemas que están totalmente integrados en la plataforma SaaS. Estos problemas se han seleccionado por su importancia práctica. Uno de los problemas tratados en la tesis, es el problema de rutas de vehículos (VRP), que consiste en calcular las rutas de menor coste de una flota de vehículos, que reparte mercancías a todos los clientes. Se ha partido de la versión más clásica del problema y se han hecho estudios en dos direcciones. Por un lado se ha cuantificado el aumento en la velocidad de ejecución de la resolución del problema en tarjetas gráficas. Por otro lado, se ha estudiado el impacto en la velocidad de ejecución y en la calidad de soluciones, en la resolución por la metaheurística de colonias de hormigas (ACO), cuando se introduce la programación lineal para optimizar las rutas individuales de cada vehículo. Este problema se ha desarrollado con los frameworks ILP y LME, y está disponible en la plataforma SaaS. Otro de los problemas tratados en la tesis, es el problema de asignación de flotas (FAP), que consiste en crear las rutas de menor coste para la flota de vehículos de una empresa de transporte de viajeros. Se ha definido un nuevo modelo de problema, que engloba características de problemas presentados en la literatura, y añade nuevas características, lo que permite modelar los requerimientos de las empresas de transporte de viajeros actuales. Este nuevo modelo resuelve de forma integrada el problema de definir los horarios de los trayectos, el problema de asignación del tipo de vehículo, y el problema de crear las rotaciones de los vehículos. Se ha creado un modelo de programación lineal para el problema, y se ha resuelto por programación lineal y por colonias de hormigas (ACO). Este problema se ha desarrollado con los frameworks ILP y LME, y está disponible en la plataforma SaaS. El último problema tratado en la tesis es el problema de planificación táctica de personal (TWFP), que consiste en definir la configuración de una plantilla de trabajadores de menor coste, para cubrir una demanda de carga de trabajo variable. Se ha definido un modelo de problema muy flexible en la definición de contratos, que permite el uso del modelo en diversos sectores productivos. Se ha definido un modelo matemático de programación lineal para representar el problema. Se han definido una serie de casos de uso, que muestran la versatilidad del modelo de problema, y permiten simular el proceso de toma de decisiones de la configuración de una plantilla de trabajadores, cuantificando económicamente cada decisión que se toma. Este problema se ha desarrollado con el framework ILP, y está disponible en la plataforma SaaS. ABSTRACT The thesis is focused on solving combinatorial optimization problems, using current technology options offered by information technology and communications, and operations research. Combinatorial optimization problems are solved in general by linear programming and metaheuristics. The application of these techniques for solving combinatorial optimization problems requires a high computational load, and algorithms are designed, on the one hand thinking to find good solutions to the problem, and on the other hand, thinking about proper use of the available computing resources. Linear programming and metaheuristic are generic resolution techniques, which can be applied to different problems, beginning with a common base that is particularized for each specific problem. In the field of software development, frameworks fulfill this function that allows you to start a project with the overall work already available, with the option to change or extend the behavior or generic basis, to build the concrete system, thus reducing the time development, and expanding the possibilities of success of the project. In this thesis, two development frameworks have been designed and developed. The ILP framework allows to modeling and solving linear programming problems, regardless of the linear programming solver used. The LME framework is designed for solving combinatorial optimization problems using metaheuristics. Traditionally, applications for solving combinatorial optimization problems are desktop applications that allow the user to manage all the information input of the problem and solve the problem locally, using the available hardware resources. Recently, a new deployment paradigm has appeared, that lets to share hardware and software resources by the Internet. This new use of computer resources is cloud computing, which presents the model of software as a service (SaaS). In this thesis, a SaaS platform has been built for solving combinatorial optimization problems, which is deployed on architectures, composed of multi-core processors and graphics cards, and has algorithms based on metaheuristics and linear programming frameworks. The SaaS infrastructure is independent of the combinatorial optimization problem to solve, and three problems are fully integrated into the SaaS platform. These problems have been selected for their practical importance. One of the problems discussed in the thesis, is the vehicle routing problem (VRP), which goal is to calculate the least cost of a fleet of vehicles, which distributes goods to all customers. The VRP has been studied in two directions. On one hand, it has been quantified the increase in execution speed when the problem is solved on graphics cards. On the other hand, it has been studied the impact on execution speed and quality of solutions, when the problem is solved by ant colony optimization (ACO) metaheuristic, and linear programming is introduced to optimize the individual routes of each vehicle. This problem has been developed with the ILP and LME frameworks, and is available in the SaaS platform. Another problem addressed in the thesis, is the fleet assignment problem (FAP), which goal is to create lower cost routes for a fleet of a passenger transport company. It has been defined a new model of problem, which includes features of problems presented in the literature, and adds new features, allowing modeling the business requirements of today's transport companies. This new integrated model solves the problem of defining the flights timetable, the problem of assigning the type of vehicle, and the problem of creating aircraft rotations. The problem has been solved by linear programming and ACO. This problem has been developed with the ILP and LME frameworks, and is available in the SaaS platform. The last problem discussed in the thesis is the tactical planning staff problem (TWFP), which is to define the staff of lower cost, to cover a given work load. It has been defined a very rich problem model in the definition of contracts, allowing the use of the model in various productive sectors. It has been defined a linear programming mathematical model to represent the problem. Some use cases has been defined, to show the versatility of the model problem, and to simulate the decision making process of setting up a staff, economically quantifying every decision that is made. This problem has been developed with the ILP framework, and is available in the SaaS platform.