6 resultados para Hooker, Richard, 1553 or 4-1600.
em Universidad Politécnica de Madrid
Resumo:
La astronomía de rayos γ estudia las partículas más energéticas que llegan a la Tierra desde el espacio. Estos rayos γ no se generan mediante procesos térmicos en simples estrellas, sino mediante mecanismos de aceleración de partículas en objetos celestes como núcleos de galaxias activos, púlsares, supernovas, o posibles procesos de aniquilación de materia oscura. Los rayos γ procedentes de estos objetos y sus características proporcionan una valiosa información con la que los científicos tratan de comprender los procesos físicos que ocurren en ellos y desarrollar modelos teóricos que describan su funcionamiento con fidelidad. El problema de observar rayos γ es que son absorbidos por las capas altas de la atmósfera y no llegan a la superficie (de lo contrario, la Tierra será inhabitable). De este modo, sólo hay dos formas de observar rayos γ embarcar detectores en satélites, u observar los efectos secundarios que los rayos γ producen en la atmósfera. Cuando un rayo γ llega a la atmósfera, interacciona con las partículas del aire y genera un par electrón - positrón, con mucha energía. Estas partículas secundarias generan a su vez más partículas secundarias cada vez menos energéticas. Estas partículas, mientras aún tienen energía suficiente para viajar más rápido que la velocidad de la luz en el aire, producen una radiación luminosa azulada conocida como radiación Cherenkov durante unos pocos nanosegundos. Desde la superficie de la Tierra, algunos telescopios especiales, conocidos como telescopios Cherenkov o IACTs (Imaging Atmospheric Cherenkov Telescopes), son capaces de detectar la radiación Cherenkov e incluso de tomar imágenes de la forma de la cascada Cherenkov. A partir de estas imágenes es posible conocer las principales características del rayo γ original, y con suficientes rayos se pueden deducir características importantes del objeto que los emitió, a cientos de años luz de distancia. Sin embargo, detectar cascadas Cherenkov procedentes de rayos γ no es nada fácil. Las cascadas generadas por fotones γ de bajas energías emiten pocos fotones, y durante pocos nanosegundos, y las correspondientes a rayos γ de alta energía, si bien producen más electrones y duran más, son más improbables conforme mayor es su energía. Esto produce dos líneas de desarrollo de telescopios Cherenkov: Para observar cascadas de bajas energías son necesarios grandes reflectores que recuperen muchos fotones de los pocos que tienen estas cascadas. Por el contrario, las cascadas de altas energías se pueden detectar con telescopios pequeños, pero conviene cubrir con ellos una superficie grande en el suelo para aumentar el número de eventos detectados. Con el objetivo de mejorar la sensibilidad de los telescopios Cherenkov actuales, en el rango de energía alto (> 10 TeV), medio (100 GeV - 10 TeV) y bajo (10 GeV - 100 GeV), nació el proyecto CTA (Cherenkov Telescope Array). Este proyecto en el que participan más de 27 países, pretende construir un observatorio en cada hemisferio, cada uno de los cuales contará con 4 telescopios grandes (LSTs), unos 30 medianos (MSTs) y hasta 70 pequeños (SSTs). Con un array así, se conseguirán dos objetivos. En primer lugar, al aumentar drásticamente el área de colección respecto a los IACTs actuales, se detectarán más rayos γ en todos los rangos de energía. En segundo lugar, cuando una misma cascada Cherenkov es observada por varios telescopios a la vez, es posible analizarla con mucha más precisión gracias a las técnicas estereoscópicas. La presente tesis recoge varios desarrollos técnicos realizados como aportación a los telescopios medianos y grandes de CTA, concretamente al sistema de trigger. Al ser las cascadas Cherenkov tan breves, los sistemas que digitalizan y leen los datos de cada píxel tienen que funcionar a frecuencias muy altas (≈1 GHz), lo que hace inviable que funcionen de forma continua, ya que la cantidad de datos guardada será inmanejable. En su lugar, las señales analógicas se muestrean, guardando las muestras analógicas en un buffer circular de unos pocos µs. Mientras las señales se mantienen en el buffer, el sistema de trigger hace un análisis rápido de las señales recibidas, y decide si la imagen que hay en el buér corresponde a una cascada Cherenkov y merece ser guardada, o por el contrario puede ignorarse permitiendo que el buffer se sobreescriba. La decisión de si la imagen merece ser guardada o no, se basa en que las cascadas Cherenkov producen detecciones de fotones en píxeles cercanos y en tiempos muy próximos, a diferencia de los fotones de NSB (night sky background), que llegan aleatoriamente. Para detectar cascadas grandes es suficiente con comprobar que más de un cierto número de píxeles en una región hayan detectado más de un cierto número de fotones en una ventana de tiempo de algunos nanosegundos. Sin embargo, para detectar cascadas pequeñas es más conveniente tener en cuenta cuántos fotones han sido detectados en cada píxel (técnica conocida como sumtrigger). El sistema de trigger desarrollado en esta tesis pretende optimizar la sensibilidad a bajas energías, por lo que suma analógicamente las señales recibidas en cada píxel en una región de trigger y compara el resultado con un umbral directamente expresable en fotones detectados (fotoelectrones). El sistema diseñado permite utilizar regiones de trigger de tamaño seleccionable entre 14, 21 o 28 píxeles (2, 3, o 4 clusters de 7 píxeles cada uno), y con un alto grado de solapamiento entre ellas. De este modo, cualquier exceso de luz en una región compacta de 14, 21 o 28 píxeles es detectado y genera un pulso de trigger. En la versión más básica del sistema de trigger, este pulso se distribuye por toda la cámara de forma que todos los clusters sean leídos al mismo tiempo, independientemente de su posición en la cámara, a través de un delicado sistema de distribución. De este modo, el sistema de trigger guarda una imagen completa de la cámara cada vez que se supera el número de fotones establecido como umbral en una región de trigger. Sin embargo, esta forma de operar tiene dos inconvenientes principales. En primer lugar, la cascada casi siempre ocupa sólo una pequeña zona de la cámara, por lo que se guardan muchos píxeles sin información alguna. Cuando se tienen muchos telescopios como será el caso de CTA, la cantidad de información inútil almacenada por este motivo puede ser muy considerable. Por otro lado, cada trigger supone guardar unos pocos nanosegundos alrededor del instante de disparo. Sin embargo, en el caso de cascadas grandes la duración de las mismas puede ser bastante mayor, perdiéndose parte de la información debido al truncamiento temporal. Para resolver ambos problemas se ha propuesto un esquema de trigger y lectura basado en dos umbrales. El umbral alto decide si hay un evento en la cámara y, en caso positivo, sólo las regiones de trigger que superan el nivel bajo son leídas, durante un tiempo más largo. De este modo se evita guardar información de píxeles vacíos y las imágenes fijas de las cascadas se pueden convertir en pequeños \vídeos" que representen el desarrollo temporal de la cascada. Este nuevo esquema recibe el nombre de COLIBRI (Concept for an Optimized Local Image Building and Readout Infrastructure), y se ha descrito detalladamente en el capítulo 5. Un problema importante que afecta a los esquemas de sumtrigger como el que se presenta en esta tesis es que para sumar adecuadamente las señales provenientes de cada píxel, estas deben tardar lo mismo en llegar al sumador. Los fotomultiplicadores utilizados en cada píxel introducen diferentes retardos que deben compensarse para realizar las sumas adecuadamente. El efecto de estos retardos ha sido estudiado, y se ha desarrollado un sistema para compensarlos. Por último, el siguiente nivel de los sistemas de trigger para distinguir efectivamente las cascadas Cherenkov del NSB consiste en buscar triggers simultáneos (o en tiempos muy próximos) en telescopios vecinos. Con esta función, junto con otras de interfaz entre sistemas, se ha desarrollado un sistema denominado Trigger Interface Board (TIB). Este sistema consta de un módulo que irá montado en la cámara de cada LST o MST, y que estará conectado mediante fibras ópticas a los telescopios vecinos. Cuando un telescopio tiene un trigger local, este se envía a todos los vecinos conectados y viceversa, de modo que cada telescopio sabe si sus vecinos han dado trigger. Una vez compensadas las diferencias de retardo debidas a la propagación en las fibras ópticas y de los propios fotones Cherenkov en el aire dependiendo de la dirección de apuntamiento, se buscan coincidencias, y en el caso de que la condición de trigger se cumpla, se lee la cámara en cuestión, de forma sincronizada con el trigger local. Aunque todo el sistema de trigger es fruto de la colaboración entre varios grupos, fundamentalmente IFAE, CIEMAT, ICC-UB y UCM en España, con la ayuda de grupos franceses y japoneses, el núcleo de esta tesis son el Level 1 y la Trigger Interface Board, que son los dos sistemas en los que que el autor ha sido el ingeniero principal. Por este motivo, en la presente tesis se ha incluido abundante información técnica relativa a estos sistemas. Existen actualmente importantes líneas de desarrollo futuras relativas tanto al trigger de la cámara (implementación en ASICs), como al trigger entre telescopios (trigger topológico), que darán lugar a interesantes mejoras sobre los diseños actuales durante los próximos años, y que con suerte serán de provecho para toda la comunidad científica participante en CTA. ABSTRACT -ray astronomy studies the most energetic particles arriving to the Earth from outer space. This -rays are not generated by thermal processes in mere stars, but by means of particle acceleration mechanisms in astronomical objects such as active galactic nuclei, pulsars, supernovas or as a result of dark matter annihilation processes. The γ rays coming from these objects and their characteristics provide with valuable information to the scientist which try to understand the underlying physical fundamentals of these objects, as well as to develop theoretical models able to describe them accurately. The problem when observing rays is that they are absorbed in the highest layers of the atmosphere, so they don't reach the Earth surface (otherwise the planet would be uninhabitable). Therefore, there are only two possible ways to observe γ rays: by using detectors on-board of satellites, or by observing their secondary effects in the atmosphere. When a γ ray reaches the atmosphere, it interacts with the particles in the air generating a highly energetic electron-positron pair. These secondary particles generate in turn more particles, with less energy each time. While these particles are still energetic enough to travel faster than the speed of light in the air, they produce a bluish radiation known as Cherenkov light during a few nanoseconds. From the Earth surface, some special telescopes known as Cherenkov telescopes or IACTs (Imaging Atmospheric Cherenkov Telescopes), are able to detect the Cherenkov light and even to take images of the Cherenkov showers. From these images it is possible to know the main parameters of the original -ray, and with some -rays it is possible to deduce important characteristics of the emitting object, hundreds of light-years away. However, detecting Cherenkov showers generated by γ rays is not a simple task. The showers generated by low energy -rays contain few photons and last few nanoseconds, while the ones corresponding to high energy -rays, having more photons and lasting more time, are much more unlikely. This results in two clearly differentiated development lines for IACTs: In order to detect low energy showers, big reflectors are required to collect as much photons as possible from the few ones that these showers have. On the contrary, small telescopes are able to detect high energy showers, but a large area in the ground should be covered to increase the number of detected events. With the aim to improve the sensitivity of current Cherenkov showers in the high (> 10 TeV), medium (100 GeV - 10 TeV) and low (10 GeV - 100 GeV) energy ranges, the CTA (Cherenkov Telescope Array) project was created. This project, with more than 27 participating countries, intends to build an observatory in each hemisphere, each one equipped with 4 large size telescopes (LSTs), around 30 middle size telescopes (MSTs) and up to 70 small size telescopes (SSTs). With such an array, two targets would be achieved. First, the drastic increment in the collection area with respect to current IACTs will lead to detect more -rays in all the energy ranges. Secondly, when a Cherenkov shower is observed by several telescopes at the same time, it is possible to analyze it much more accurately thanks to the stereoscopic techniques. The present thesis gathers several technical developments for the trigger system of the medium and large size telescopes of CTA. As the Cherenkov showers are so short, the digitization and readout systems corresponding to each pixel must work at very high frequencies (_ 1 GHz). This makes unfeasible to read data continuously, because the amount of data would be unmanageable. Instead, the analog signals are sampled, storing the analog samples in a temporal ring buffer able to store up to a few _s. While the signals remain in the buffer, the trigger system performs a fast analysis of the signals and decides if the image in the buffer corresponds to a Cherenkov shower and deserves to be stored, or on the contrary it can be ignored allowing the buffer to be overwritten. The decision of saving the image or not, is based on the fact that Cherenkov showers produce photon detections in close pixels during near times, in contrast to the random arrival of the NSB phtotons. Checking if more than a certain number of pixels in a trigger region have detected more than a certain number of photons during a certain time window is enough to detect large showers. However, taking also into account how many photons have been detected in each pixel (sumtrigger technique) is more convenient to optimize the sensitivity to low energy showers. The developed trigger system presented in this thesis intends to optimize the sensitivity to low energy showers, so it performs the analog addition of the signals received in each pixel in the trigger region and compares the sum with a threshold which can be directly expressed as a number of detected photons (photoelectrons). The trigger system allows to select trigger regions of 14, 21, or 28 pixels (2, 3 or 4 clusters with 7 pixels each), and with extensive overlapping. In this way, every light increment inside a compact region of 14, 21 or 28 pixels is detected, and a trigger pulse is generated. In the most basic version of the trigger system, this pulse is just distributed throughout the camera in such a way that all the clusters are read at the same time, independently from their position in the camera, by means of a complex distribution system. Thus, the readout saves a complete camera image whenever the number of photoelectrons set as threshold is exceeded in a trigger region. However, this way of operating has two important drawbacks. First, the shower usually covers only a little part of the camera, so many pixels without relevant information are stored. When there are many telescopes as will be the case of CTA, the amount of useless stored information can be very high. On the other hand, with every trigger only some nanoseconds of information around the trigger time are stored. In the case of large showers, the duration of the shower can be quite larger, loosing information due to the temporal cut. With the aim to solve both limitations, a trigger and readout scheme based on two thresholds has been proposed. The high threshold decides if there is a relevant event in the camera, and in the positive case, only the trigger regions exceeding the low threshold are read, during a longer time. In this way, the information from empty pixels is not stored and the fixed images of the showers become to little \`videos" containing the temporal development of the shower. This new scheme is named COLIBRI (Concept for an Optimized Local Image Building and Readout Infrastructure), and it has been described in depth in chapter 5. An important problem affecting sumtrigger schemes like the one presented in this thesis is that in order to add the signals from each pixel properly, they must arrive at the same time. The photomultipliers used in each pixel introduce different delays which must be compensated to perform the additions properly. The effect of these delays has been analyzed, and a delay compensation system has been developed. The next trigger level consists of looking for simultaneous (or very near in time) triggers in neighbour telescopes. These function, together with others relating to interfacing different systems, have been developed in a system named Trigger Interface Board (TIB). This system is comprised of one module which will be placed inside the LSTs and MSTs cameras, and which will be connected to the neighbour telescopes through optical fibers. When a telescope receives a local trigger, it is resent to all the connected neighbours and vice-versa, so every telescope knows if its neighbours have been triggered. Once compensated the delay differences due to propagation in the optical fibers and in the air depending on the pointing direction, the TIB looks for coincidences, and in the case that the trigger condition is accomplished, the camera is read a fixed time after the local trigger arrived. Despite all the trigger system is the result of the cooperation of several groups, specially IFAE, Ciemat, ICC-UB and UCM in Spain, with some help from french and japanese groups, the Level 1 and the Trigger Interface Board constitute the core of this thesis, as they have been the two systems designed by the author of the thesis. For this reason, a large amount of technical information about these systems has been included. There are important future development lines regarding both the camera trigger (implementation in ASICS) and the stereo trigger (topological trigger), which will produce interesting improvements for the current designs during the following years, being useful for all the scientific community participating in CTA.
Resumo:
The effects of fiber inclusion, feed form, and energy concentration of the diet on the growth performance of pullets from hatching to 5 wk age were studied in 2 experiments. In Experiment 1, there was a control diet based on cereals and soybean meal, and 6 extra diets that included 2 or 4% of cereal straw, sugar beet pulp (SBP), or sunflower hulls (SFHs) at the expense (wt/wt) of the whole control diet. From hatching to 5 wk age fiber inclusion increased (P < 0.05) ADG and ADFI, and improved (P < 0.05) energy efficiency (EnE; kcal AMEn/g ADG), but body weight (BW) uniformity was not affected. Pullets fed SFH tended to have higher ADG than pullets fed SBP (P = 0.072) with pullets fed straw being intermediate. The feed conversion ratio (FCR) was better (P < 0.05) with 2% than with 4% fiber inclusion. In Experiment 2, 10 diets were arranged as a 2×5 factorial with 2 feed forms (mash vs. crumbles) and 5 levels of AMEn (2,850, 2,900, 2,950, 3,000, and 3,050 kcal/kg). Pullets fed crumbles were heavier and had better FCR than pullets fed mash (P < 0.001). An increase in the energy content of the crumble diets reduced ADFI and improved FCR linearly, but no effects were detected with the mash diets (P < 0.01 and P < 0.05 for the interactions). Feeding crumbles tended to improve BW uniformity at 5 wk age (P = 0.077) but no effects were detected with increases in energy concentration of the diet. In summary, the inclusion of moderate amounts of fiber in the diet improves pullet performance from hatching to 5 wk age. The response of pullets to increases in energy content of the diet depends on feed form with a decrease in feed intake when fed crumbles but no changes when fed mash. Feeding crumbles might be preferred to feeding mash in pullets from hatching to 5 wk age.
Resumo:
We investigated the effects of fiber inclusion in the diet on growth performance and digestive traits in pullets from hatching to 17 wk of age. The control diets of the 3 feeding periods (0 to 5 wk, 5 to 10 wk, and 10 to 17 wk) were based on corn and soybean meal and did not include any additional fiber source. The experimental diets included 2 or 4% of cereal straw or sugar beet pulp (SBP) at the expense (wt:wt) of the control diet. From 0 to 5 wk of age, fiber inclusion did not affect pullet performance. From hatch to 17 wk of age, the inclusion of straw had little effect on pullet performance but the inclusion of 4% SBP reduced (ADG) (P < 0.05) and reduced feed conversion ratio (FCR; P < 0.001). Pullets fed straw had greater ADG (P < 0.05) and better energy conversion ratio (P < 0.01) than pullets fed SBP. An increase in fiber from 2 to 4% reduced FCR (P < 0.05). Body weight uniformity was not affected by diet. Fiber inclusion increased the relative weight (% BW) of the gizzard at 5 wk (P = 0.056) and 10 wk (P < 0.01) of age, but no differences were detected between fiber sources. At same ages, the relative length (cm/kg BW) of the pullets (P = 0.058 and P < 0.01, respectively) and tarsus (P = 0.079 and P < 0.05, respectively) was higher in pullets fed SBP than in pullets fed straw. Fiber inclusion, however, did not affect any of these traits at 17 wk of age. In summary, the inclusion of 2% straw at the expense (wt:wt) of the whole diet did not affect pullet performance at 17 wk of age. An increase in the level of straw from 2 to 4% reduced FCR but did not affect ADG. The inclusion of SBP, however, reduced pullet growth, with effects being more pronounced at the higher level.
Resumo:
El minuto final de un partido ajustado de baloncesto es un momento crítico que está sujeto a multitud de factores que influyen en su desarrollo. Así, el porcentaje de acierto en los tiros libres durante ese periodo de tiempo va a determinar, en muchas ocasiones, el resultado final del partido. La disminución de rendimiento (drop) en esta faceta de juego en condiciones de presión, puede estar relacionada con múltiples variables propias del contexto deportivo estudiado, como por ejemplo: los segundos restantes de posesión, la situación en el marcador (ir ganando, empatando o perdiendo), la localización del partido (jugar en casa o fuera), la fase de competición (fase regular o eliminatorias) o el nivel del equipo (mejores/peores equipos). Además, las características del jugador que realiza los lanzamientos tienen una gran importancia respecto a su edad y años de experiencia para afrontar los momentos críticos, así como el puesto de juego que ocupa en el equipo. En este sentido, la combinación de factores del contexto y del jugador, permiten interactuar en el rendimiento del lanzador en los momentos finales de partido durante sus lanzamientos de tiro libre. El presente trabajo de tesis doctoral tiene como objetivo encontrar aquellas variables más relacionadas con la disminución de rendimiento del jugador en los tiros libres durante el último minuto de juego, y la última serie de tiros libres en los partidos ajustados de baloncesto. Para alcanzar el objetivo del estudio se analizaron 124 partidos ajustados (diferencias iguales o inferiores a 2 puntos) de todas las competiciones (fase regular, playoff y copa del Rey) de la liga ACB durante las temporadas 2011-2012 a 2014-2015. Para el registro de variables se analizó el porcentaje de acierto en los tiros libres del lanzador en la liga regular, partido completo, último minuto y última serie. De este modo se trató de analizar qué variables del contexto y del jugador permitían explicar el rendimiento en los tiros libres durante el último minuto, y la última serie de tiros libres del partido. Por otro lado, se trató de conocer el grado de asociación entre el descenso del rendimiento (drop) en los momentos finales de partido, y las variables estudiadas del jugador: puesto de juego, edad, y años de experiencia profesional; mientras que las variables situacionales consideradas fueron: fase de competición, localización, clasificación, tiempo restante, y diferencia parcial en el marcador. Para el análisis de los datos se realizaron dos modelos estadísticos: 1º) un modelo de regresión lineal múltiple para conocer el efecto de las variables independientes en el porcentaje de aciertos del lanzador en el último minuto, y en la última serie de tiros libres del partido; y 2º) un análisis de regresión logística binomial para analizar la relación existente entre la probabilidad de tener un drop (disminución del rendimiento) y las características del lanzador, y las variables situacionales. Los resultados del modelo de regresión lineal múltiple mostraron efectos negativos significativos en el porcentaje de acierto en los tiros libres durante el último minuto, cuando los lanzadores son los pívots (-19,45%). Por otro lado, los resultados durante la última serie mostraron el efecto negativo significativo sobre la posición de pívot (- 19,30%) y la diferencia parcial en el marcador (-3,33%, para cada punto de diferencia en el marcador) en el porcentaje de acierto en los tiros libres. Las variables independientes edad, experiencia profesional, clasificación en la liga regular, fase de competición, localización, y tiempo restante, no revelaron efectos significativos en los modelos de regresión lineal. Los resultados de la regresión logística binomial revelaron que las variables experiencia profesional entre 13 y 18 años (OR = 4,63), jugar de alero (OR = 23,01), y jugar de base (OR = 10,68) están relacionadas con una baja probabilidad de disminuir el rendimiento durante el último minuto del partido; mientras que ir ganando, aumenta esta probabilidad (OR = 0,06). Además, los resultados de la última serie mostraron una menor disminución del rendimiento del jugador cuando tiene entre 13 y 18 años de experiencia (OR = 4,28), y juega de alero (OR = 8,06) o base (OR = 6,34). Por el contrario, las variables situacionales relacionadas con esa disminución del rendimiento del jugador son las fases eliminatorias (OR = 0,22) e ir ganando (OR = 0,04). Los resultados principales del estudio mostraron que existe una disminución del rendimiento del jugador en su porcentaje de acierto en los tiros libres durante el último minuto y en la última serie de lanzamientos del partido, y que está relacionada significativamente con la edad, experiencia profesional, puesto de juego del jugador, y diferencia parcial en el marcador. Encontrando relación también con la fase de competición, durante la última serie de tiros libres del partido. Esta información supone una valiosa información para el entrenador, y su aplicación en el ámbito competitivo real. En este sentido, la creación de simulaciones en el apartado de aplicaciones prácticas, permite predecir el porcentaje de acierto en los tiros libres de un jugador durante los momentos de mayor presión del partido, en base a su perfil de rendimiento. Lo que puede servir para realizar una toma de decisiones más idónea, con el objetivo de lograr el mejor resultado. Del mismo modo, orienta el tipo de proceso de entrenamiento que se ha de seguir, en relación a los jugadores más tendentes al drop, con el objetivo de minimizar el efecto de la presión sobre su capacidad para rendir adecuadamente en la ejecución de los tiros libres, y lograr de esta manera un rendimiento más homogéneo en todos los jugadores del equipo en esta faceta del juego, durante el momento crítico del final de partido. ABSTRACT. The final minute of a close game in basketball is a critical moment which is subject to many factors that influence its development. Thus, the success rate in free-throws during that period will determine, in many cases, the outcome of the game. Decrease of performance (drop) in this facet of play under pressure conditions, may be related to studied own multiple sports context variables, such as the remaining seconds of possession, the situation in the score (to be winning, drawing, or losing) the location of the match (playing at home or away), the competition phase (regular season or playoffs) or team level (best/worst teams). In addition, the characteristics of the player are very important related to his age and years of experience to face the critical moments, as well as his playing position into team. In this sense, the combination of factors in context and player, allows interact about performance of shooter in the final moments of the game during his free-throw shooting. The aim of this present doctoral thesis was find the most related variables to player´s drop in free throws in the last minute of the game and the last row of free-throws in closed games of basketball. To achieve the objective of the study, 124 closed games (less or equal than 2 points difference) were analyzed in every copetition in ACB league (regular season, playoff and cup) from 2011-2012 to 2014-2015 seasons. To record the variables, the percentage of success of the shooter in regular season, full game, last minute, and last row were analyzed. This way, it is tried to analyze which player and context variables explain the free-throw performance in last minute and last row of the game. On the other hand, it is tried to determine the degree of association between decrease of performance (drop) of the player in the final moments, and studied player variables: playing position, age, and years of professional experience; while considered situational variables considered were: competition phase, location, classification, remaining time, and score-line. For data analysis were performed two statistical models: 1) A multiple linear regression model to determine the effect of the independent variables in the succsess percentage of shooter at the last minute, and in the last row of free-throws in the game; and 2) A binomial logistic regression analysis to analyze the relationship between the probability of a drop (lower performance) and the characteristics of the shooter and situational variables. The results of multiple linear regression model showed significant negative effects on the free-throw percentage during last minute, when shooters are centers (-19.45%). On the other hand, results in the last series showed the significant negative effect on the center position (-19.30%) and score-line (-3.33% for each point difference in the score) in the free-throw percentage. The independent variables age, professional experience, ranking in the regular season, competition phase, location, and remaining time, revealed no significant effects on linear regression models. The results of the binomial logistic regression showed that the variables professional experience between 13 and 18 years (OR = 4.63), playing forward (OR = 23.01) and playing guard (OR = 10.68) are related to reduce the probability to decrease the performance during the last minute of the game. While wining, increases it (OR = 0.06). Furthermore, the results of the last row showed a reduction in performance degradation when player is between 13 and 18 years of experience (OR = 4.28), and playing forward (OR = 8.06) or guard (OR = 6.34). By contrast, the variables related to the decrease in performance of the player are the knockout phases (OR = 0.22) and wining (OR = 0.04). The main results of the study showed that there is a decrease in performance of the player in the percentage of success in free-throws in the last minute and last row of the game, and it is significantly associated with age, professional experience, and player position. Finding relationship with the competition phase, during last row of free-throws of the game too. This information is a valuable information for the coach, for applying in real competitive environment. In this sense, create simulations in the section of practical applications allows to predict the success rate of free-throw of a player during the most pressing moments of the game, based on their performance profile. What can be used to take more appropriate decisions in order to achieve the best result. Similarly, guides the type of training process must be followed in relation to the most favorable players to drop, in order to minimize the effect of pressure on their ability to perform properly in the execution of the free-throws. And to achieve, in this way, a more consistent performance in all team players in this facet of the game, during the critical moment in the final of the game.
Resumo:
The effects of fiber inclusion, feed form, and energy concentration of the diet on the growth performance of pullets from hatching to 5 wk age were studied in 2 experiments. In Experiment 1, there was a control diet based on cereals and soybean meal, and 6 extra diets that included 2 or 4% of cereal straw, sugar beet pulp (SBP), or sunflower hulls (SFHs) at the expense (wt/wt) of the whole control diet. From hatching to 5 wk age fiber inclusion increased (P < 0.05) ADG and ADFI, and improved (P < 0.05) energy efficiency (EnE; kcal AMEn/g ADG), but body weight (BW) uniformity was not affected. Pullets fed SFH tended to have higher ADG than pullets fed SBP (P = 0.072) with pullets fed straw being intermediate. The feed conversion ratio (FCR) was better (P < 0.05) with 2% than with 4% fiber inclusion. In Experiment 2, 10 diets were arranged as a 2×5 factorial with 2 feed forms (mash vs. crumbles) and 5 levels of AMEn (2,850, 2,900, 2,950, 3,000, and 3,050 kcal/kg). Pullets fed crumbles were heavier and had better FCR than pullets fed mash (P < 0.001). An increase in the energy content of the crumble diets reduced ADFI and improved FCR linearly, but no effects were detected with the mash diets (P < 0.01 and P < 0.05 for the interactions). Feeding crumbles tended to improve BW uniformity at 5 wk age (P = 0.077) but no effects were detected with increases in energy concentration of the diet. In summary, the inclusion of moderate amounts of fiber in the diet improves pullet performance from hatching to 5 wk age. The response of pullets to increases in energy content of the diet depends on feed form with a decrease in feed intake when fed crumbles but no changes when fed mash. Feeding crumbles might be preferred to feeding mash in pullets from hatching to 5 wk age.
Resumo:
A conceptual energy storage system design that utilizes ultra high temperature phase change materials is presented. In this system, the energy is stored in the form of latent heat and converted to electricity upon demand by TPV (thermophotovoltaic) cells. Silicon is considered in this study as PCM (phase change material) due to its extremely high latent heat (1800 J/g or 500 Wh/kg), melting point (1410 C), thermal conductivity (~25 W/mK), low cost (less than $2/kg or $4/kWh) and abundance on earth. The proposed system enables an enormous thermal energy storage density of ~1 MWh/m3, which is 10e20 times higher than that of lead-acid batteries, 2e6 times than that of Li-ion batteries and 5e10 times than that of the current state of the art LHTES systems utilized in CSP (concentrated solar power) applications. The discharge efficiency of the system is ultimately determined by the TPV converter, which theoretically can exceed 50%. However, realistic discharge efficiencies utilizing single junction TPV cells are in the range of 20e45%, depending on the semiconductor bandgap and quality, and the photon recycling efficiency. This concept has the potential to achieve output electric energy densities in the range of 200-450 kWhe/m3, which is comparable to the best performing state of the art Lithium-ion batteries.