3 resultados para Hispaniola

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An evaluation of the seismic hazard in La Hispaniola Island has been carried out, as part of the cooperative project SISMO-HAITI, supported by the Technical University of Madrid (UPM) and developed by several Spanish Universities, the National Observatory of Environment and Vulnerability) ONEV of Haiti, and with contributions from the Puerto Rico Seismic Network (PRSN) and University Seismological Institute of Dominican Republic (ISU). The study was aimed at obtaining results suitable for seismic design purposes. It started with the elaboration of a seismic catalogue for the Hispaniola Island, requiring an exhaustive revision of data reported by more than 20 seismic agencies, apart from these from the PRSN and ISU. The final catalogue contains 96 historical earthquakes and 1690 instrumental events, and it was homogenized to moment magnitude, Mw. Seismotectonic models proposed for the region were revised and a new regional zonation was proposed, taking into account geological andtectonic data, seismicity, focal mechanisms, and GPS observations. In parallel, attenuation models for subduction and crustal zones were revised in previous projects and the most suitable for the Caribbean plate were selected. Then, a seismic hazard analysis was developed in terms of peak ground acceleration, PGA, and spectral accelerations, SA (T), for periods of 0.1, 0.2, 0.5, 1 and 2s, using the Probabilistic Seismic Hazard Assessment (PSHA) methodology. As a result, different hazard maps were obtained for the quoted parameters, together with Uniform Hazard Spectra for Port au Prince and the main cities in the country. Hazard deaggregation was also carried out in these towns, for the target motion given by the PGA and SA (1s) obtained for return periods of 475, 975 and 2475 years. Therefore, the controlling earthquakes for short- and long-period target motions were derived. This study was started a few months after the 2010 earthquake, as a response to an aid request from the Haitian government to the UPM, and the results are available for the definition of the first building code in Haiti.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New 40Ar/39Ar ages for alunite from the Moore and Monte Negro deposits in the Pueblo Viejo district, as well as from a newly discovered alunite-bearing zone on Loma la Cuaba west of the known deposits, are reported here. The ages range from about 80 to 40 Ma, with closely adjacent samples exhibiting very different ages. Interpretation of these results in the context of estimated closure temperatures for alunite and the geologic and tectonic evolution of Hispaniola does not lead to a simple conclusion about the age of mineralization. The simplest interpretation, that mineralization was caused by a buried Late Cretaceous (~80 Ma) intrusion, is complicated by lack of intrusions of this age in the area and absence of alteration in overlying limestone. The alternative interpretation, that mineralization was formed during Early Cretaceous (~110 Ma) magmatism and that the 40Ar/39Ar ages were completely reset by Late Cretaceous thrusting, is complicated by a lack of information on the timing and thermal effects of thrusting in central Hispaniola. Alunite studies have yielded similar unclear results in other pre-Cenozoic ore systems, notably those of the Lachlan fold belt in Australia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seismic hazard study in “La Hispaniola” island in connection with the land tenure situation in the region, in order to define priority areas with a high risk, where some land management recommendations are proposed. The seismic hazard assessment has been carried out following the probabilistic method with a seismogenic zonation and including the major faults of the region as independent units. In order to identify the priority areas, it has taken into account, besides the seismic hazard study, the map of changes of static Coulomb failure stress and the landslide hazard map.