4 resultados para Hipertermia maligna
em Universidad Politécnica de Madrid
Resumo:
Las nanopartículas de metales nobles (especialmente las de oro) tienen un gran potencial asociado al desarrollo de sistemas de terapia contra el cáncer debido principalmente a sus propiedades ópticas, ya que cuando son irradiadas con un haz de luz sintonizado en longitud de onda con su máximo de Resonancia de Plasmón Superficial, absorben de manera muy eficiente dicha luz y la disipan rápidamente al medio en forma de calor localizado. Esta característica por tanto, puede ser aprovechada para conseguir elevar la temperatura de células tumorales hasta sobrepasar umbrales a partir de los cuales se produciría la muerte celular. Partiendo de estos principios, esta tesis se centra en el desarrollo y la caracterización de una serie de prototipos de hipertermia óptica basados en la irradiación de nanopartículas de oro con un haz de luz adecuado, así como en la aplicación in vitro de la terapia sobre células cancerígenas. Además, el trabajo se orienta a identificar y comprender los procesos mecánicos y térmicos asociados a este tipo de hipertermia, y a desarrollar modelos que los describan, estudiando y planteando nuevas formas de irradiación, para, en última instancia, poder optimizar los procesos descritos y hacerlos más efectivos. Los resultados obtenidos indican que, el uso de nanopartículas de oro, y más concretamente de nanorods de oro, para llevar a cabo terapias de hipertermia óptica, permite desarrollar terapias muy efectivas para inducir muerte en células cancerígenas, especialmente en tumores superficiales, o como complemento quirúrgico en tumores internos. Sin embargo, los efectos de la toxicidad de las nanopartículas de oro, aún deben ser detalladamente estudiados, ya que este tipo de terapias sólo será viable si se consigue una completa biocompatibilidad. Por otro lado, el estudio exhaustivo de los procesos térmicos que tienen lugar durante la irradiación de las nanopartículas ha dado lugar a una serie de modelos que permiten determinar la efectividad fototérmica de las nanopartículas y además, visualizar la evolución de la temperatura tanto a escala nanométrica como a escala macrométrica, en función de los parámetros ópticos y térmicos del sistema. El planteamiento de nuevas formas de irradiación y el desarrollo de dispositivos orientados a estudiar los fenómenos mecánicos que tienen lugar durante la irradiación pulsada de baja frecuencia y baja potencia de nanopartículas de oro, ha dado lugar a la detección de ondas de presión asociadas a procesos de expansión termoelástica, abriendo la puerta al desarrollo de terapias de hipertermia que combinen la muerte celular producida por calentamiento con la muerte derivada de los fenómenos mecánicos descritos.VII Noble metal nanoparticles (especially gold ones), have a huge potential in the development of therapy systems against cancer mainly due to their optical properties, so that, when these particles are irradiated with a light that is syntonized in wavelength with their maximum of Surface Plasmon Resonance, they effectively absorb and dissipate the light to the surrounding medium as localized heat. We can take advantage of this characteristic for rising the temperature of cancer cells above the threshold at which cellular death would occur. From these principles, this thesis is oriented to the development and characterization of a series of optical hyperthermia prototypes based on the irradiation of gold nanoparticles using the suitable light, and on the in vitro application of this therapy over cancer cells, to understand the mechanical and thermal processes associated with this kind of hyperthermia, developing descriptive models, and to study and to approach new ways of irradiation in order to, ultimately, optimize the described processes and make them more effective. The obtained results show that, the use of gold nanoparticles, and more specifically, of gold nanorods, to carry out optical hyperthermia therapies, allows the development of very effective therapies in order to induce death in VIII cancer cells, especially in superficial tumors, or like surgical complement in more internal tumors. However, the toxicity effects of the gold nanoparticles still need to be studied more detail, because this kind of therapies will be feasible only if a complete biocompatibility is achieved. On the other hand, the exhaustive study of the thermal processes that take place during the irradiation of the nanoparticles resulted in a series of models that allow the determination of the photothermal efficiency of the nanoparticles and also the visualization of the temperature evolution, both at nanoscale and at macroscale, as a function of the optical and thermal parameters of the system. The proposal of new ways of irradiation and the development of devices oriented to study the mechanical effects that take place during the low frequency and low power pulsing irradiation of gold nanoparticles has led to the detection of pressure waves associated to thermoelastic expansion processes, opening the door to the development of hyperthermia therapies that combine the cellular death due to the heating with the death derived from the described mechanical phenomena.
Resumo:
El presente Trabajo de Fin de Grado es fruto de la colaboración en una investigación sobre la hipertermia magnética entre el Centro de Electrónica Industrial de la ETSII UPM (CEI) y el Centro de Tecnología Biomédica UPM (CTB). La hipertermia magnética es un tratamiento contra el cáncer que se encuentra en fase de desarrollo en distintos lugares alrededor del mundo. Se trata de una terapia que consiste en elevar la temperatura de las células cancerígenas hasta valores de entre 42 y 46ºC con el fin de destruirlas. Esto es posible pues por lo general, las células cancerígenas presentan una mayor sensibilidad ante efectos de hipertermia que el resto de células, por lo que una vez alcanzada la temperatura deseada se destruirían las células anómalas y las sanas quedarían intactas. Si se induce al paciente fiebre hasta los 39 ºC, tan sólo sería necesario alcanzar incrementos de temperatura de 3 o 4ºC para que el tratamiento tuviera éxito. El calentamiento se produce gracias al movimiento de nanopartículas magnéticas (NPMs) situadas en dichas células mediante técnicas médicas ya estudiadas. A su vez este movimiento se da gracias a la aplicación de un campo magnético sobre las NPMs. El equipo electrónico del que se dispone en esta investigación y que genera el campo magnético, está constituido esencialmente por un inversor de potencia en puente completo con carga inductiva, una placa de control y una fuente de tensión continua. A lo largo de este trabajo se abordarán y estudiarán varias cuestiones en línea con la continuidad de la investigación en este tratamiento y en aspectos de la misma como el estudio del equipo disponible y su mejora. En primer lugar se lleva a cabo un estudio de caracterización térmica del equipo del que se dispone, con el objetivo de conocer los parámetros de los que depende su funcionamiento y que permitirán verificar y dar consistencia a los resultados de los posteriores ensayos que con él se harán. Así mismo se realiza una fase de ensayos con el objetivo de optimizar el equipo, determinando cuales son los parámetros más relevantes y los valores de los mismos, que llevan al equipo a su máximo rendimiento en términos de incrementos de temperatura de las NPMs y por tanto hacia el éxito de la terapia. Tras la caracterización y optimización del equipo de hipertermia, se diseña una nueva fase de ensayos que tiene como fin la comparación de los resultados experimentales con el modelo físico teórico de calentamiento de las NPMs. Además se busca la comprobación de ciertas hipótesis extraídas de los mismos resultados experimentales, como la influencia de la forma de onda de la señal excitadora en el incremento de temperatura. Finalmente y con el fin de mejorar el rendimiento del equipo, se elabora un conjunto de posibles geometrías para la carga inductiva que incluya un núcleo de hierro, pues hasta el momento la bobina de la que se disponía tenía núcleo de aire. Se simulan las nuevas geometrías de la bobina con núcleo de hierro y se estudia cómo influyen los cambios en el campo magnético. Los avances en la investigación llevados a cabo en este Trabajo de Fin de Grado han permitido dar un paso más en el rendimiento, la fiabilidad de resultados y la mejora del equipo de hipertermia magnética, abriendo las puertas a ensayos in vitro y posteriormente in vivo para una terapia que podría estar más cerca de dar tratamiento eficaz a una de las enfermedades más implacables de nuestro tiempo.
Resumo:
Los nanomateriales han adquirido recientemente un gran interés debido a la gran con el diagnóstico como con la terapia de enfermedades muy variadas. Dentro de los nanomateriales utilizados en biomedicina, concretamente las nanopartículas magnéticas (NPMs) muestran un interés especial por las como agente de contraste en imagen de resonancia magnética (RM) y por tanto ser de gran utilidad en el diagnóstico de diferentes patologías. Otra de las aplicaciones potenciales de las NPMs en biomedicina se encuentra en el ámbito de la terapia, por ejemplo, la destrucción de tumores mediante hipertermia al aprovecharse la capacidad que poseen las partículas para producir calor en respuesta a la aplicación de campos magnéticos externos.
Resumo:
Los nanomateriales han adquirido recientemente un gran interés debido a la gran variedad de aplicaciones que pueden llegar a tener en el ámbito de la biomedicina. Este trabajo recoge las posibilidades tanto diagnósticas como terapéuticas que presentan dos modalidades de nanomateriales: nanopartículas de óxido de hierro y nanopartículas de oro. Para ello, en una primera aproximación se ha llevado a cabo la caracterización de las nanopartículas desde el punto de vista de la biocompatibilidad asociada a su tamaño y al tiempo de contacto o circulación en células y tejidos, ensayada tanto in vitro como in vivo así como la cinética de acumulación de dichas nanopartículas en el organismo vivo. Posteriormente se ha realizado la biofuncionalización de los dos tipos de nanopartículas para reconocer dianas moleculares específicas y poder ser utilizadas en el futuro en dos aplicaciones biomédicas diferentes: diagnóstico de enfermedad de Alzheimer mediante imagen de resonancia magnética y destrucción selectiva de células tumorales mediante hipertermia óptica. ABSTRACT Nanomaterials have recently gained a great interest due to the variety of applications that can have in the field of biomedicine. This work covers both diagnostic and therapeutic possibilities that present two types of nanomaterials: iron oxide nanoparticles and gold nanoparticles. Therefore, in a first approximation it has performed the characterizing of nanoparticles from the standpoint of biocompatibility associated with their size and time of contact or movement in cells and tissues, tested both in vitro and in vivo as well as the kinetics of accumulation of the nanoparticles into the living organism. Subsequently the biofunctionalization of two types of nanoparticles was made to recognize specific molecular targets and can be used in the future in two different biomedical applications: diagnosis of Alzheimer's disease by magnetic resonance imaging and selective destruction of tumor cells by optical hyperthermia.