1 resultado para Hinge model
em Universidad Politécnica de Madrid
Resumo:
La presente tesis analiza la mejora de la resistencia estructural ante vuelco de autocares enfocando dos vías de actuación: análisis y propuestas de requisitos reglamentarios a nivel europeo y la generación de herramientas que ayuden al diseño y a la verificación de estos requisitos. Los requisitos reglamentarios de resistencia estructural a vuelco contemplan la superestructura de los vehículos pero no para los asientos y sistemas de retención. La influencia de los pasajeros retenidos es superior a la incluida en reglamentación (Reg. 66.01) debiendo considerarse unida al vehículo un porcentaje de la masa de los pasajeros del 91% para cinturón de tres puntos y del 52% para cinturón subabdominal frente al 50% reglamentario para todos los casos. Se ha determinado la cinemática y dinámica del vuelco normativo en sus diferentes fases, formulando las energías en las fases iniciales (hasta el impacto contra el suelo) y determinando la fase final de deformación a través del análisis secuencial de ensayos de módulos reales. Se han determinado los esfuerzos para los asientos que se dividen en dos fases diferenciadas temporalmente: una primera debida a la deformación estructural y una segunda debida al esfuerzo del pasajero retenido que se produce en sentido opuesto (con una deceleración del pasajero en torno a 3.3 g). Se ha caracterizado a través de ensayos cuasi.estáticos el comportamiento de perfiles a flexión y de las uniones estructurales de las principales zonas del vehículo (piso, ventana y techo) verificándose la validez del comportamiento plástico teórico Kecman.García para perfiles de hasta 4 mm de espesor y caracterizando la resistencia y rigidez en la zona elástica de las uniones en función del tipo de refuerzo, materiales y perfiles (análisis de más de 180 probetas). Se ha definido un método de ensayo cuasi.estático para asientos ante esfuerzos de vuelco, ensayándose 19 butacas y determinándose que son resistentes (salvo las uniones a vehículo con pinzas), que son capaces de absorber hasta más de un 17% de la energía absorbida, aunque algunos necesitan optimización para llegar a contribuir en el mecanismo de deformación estructural. Se han generado modelos simplificados para introducir en los modelos barra.rótula plástica: un modelo combinado unión+rótula plástica (que incluye la zona de rigidez determinada en función del tipo de unión) para la superestructura y un modelo simplificado de muelles no.lineales para los asientos. Igualmente se ha generado la metodología de diseño a través de ensayos virtuales con modelos de detalle de elementos finitos tanto de las uniones como de los asientos. Se ha propuesto una metodología de diseño basada en obtener el “mecanismo óptimo de deformación estructural” (elevando la zona de deformación lateral a nivel de ventana y en pilar o en costilla en techo). Para ello se abren dos vías: diseño de la superestructura (selección de perfiles y generación de uniones resistentes) o combinación con asientos (que en lugar de solo resistir las cargas pueden llegar a modificar el mecanismo de deformación). Se ha propuesto una metodología de verificación alternativa al vuelco de vehículo completo que contempla el cálculo cuasi.estático con modelos simplificados barra.rótula plástica más el ensayo de una sección representativa con asientos y utillajes antropomórficos retenidos que permite validar el diseño de las uniones, determinar el porcentaje de energía que debe absorberse por deformación estructural (factor C) y verificar el propio asiento como sistema de retención. ABSTRACT This research analyzes the improvement of the structural strength of buses and coaches under rollover from two perspectives: regulatory requirements at European level and generation of tools that will help to the design and to the verification of requirements. European Regulations about rollover structural strength includes requirements for the superstructure of the vehicles but not about seats, anchorages and restraint systems. The influence of the retained passengers is higher than the one included currently in the Regulations (Reg. 66.01), being needed to consider a 91% of the passenger mass as rigidly joint to the vehicle (for 3 points’ belt, a 52% for 2 points’ belt) instead of the 50% included in the Regulation. Kinematic and dynamic of the normative rollover has been determined from testing of different sections, formulating the energies of the first phases (up to the first impact with the ground) and determining the last deformation phase through sequential analysis of movements and deformations. The efforts due to rollover over the seats have been established, being divided in two different temporal phases: a first one due to the structural deformation of the vehicle and a second one due to the effort of the restrained passenger being this second one in opposite sense (with a passenger deceleration around 3.3 g). From quasi.static testing, the behavior of the structural tubes under flexural loads, including the principal joints in the vehicle (floor, window and roof), the validity of the theoretical plastic behavior according Kecman.García theories have been verified up to 4 mm of thickness. Strength of the joints as well as the stiffness of the elastic zone has been determined in function of main parameters: type of reinforcement, materials and section of the tubes (more than 180 test specimens). It has been defined a quasi.static testing methodology to characterize the seats and restrain system behavior under rollover, testing 19 double seats and concluding that they are resistant (excepting clamping joints), that they can absorb more than a 17 of the absorbed energy, and that some of them need optimization to contribute in the structural deformation mechanism. It has been generated simplified MEF models, to analyze in a beam.plastic hinge model: a combined model joint+plastic hinge (including the stiffness depending on the type of joint) for the superstructure and a simplified model with non.lineal springs to represent the seats. It has been detailed methodologies for detailed design of joints and seats from virtual testing (MEF models). A design methodology based in the “optimized structural deformation mechanism” (increasing the height of deformation of the lateral up to window level) is proposed. Two possibilities are analyzed: design of the superstructure based on the selection of profiles and design of strength joints (were seats only resist the efforts and contribute in the energy absorption) or combination structure.seats, were seats contributes in the deformation mechanism. An alternative methodology to the rollover of a vehicle that includes the quasi.static calculation with simplified models “beam.joint+plastic hinge” plus the testing of a representative section of the vehicle including seats and anthropomorphic ballast restrained by the safety belts is presented. The test of the section allows validate the design of the joints, determine the percentage of energy to be absorbed by structural deformation (factor C) and verify the seat as a retention system.