41 resultados para High-Dimensional Space Geometrical Informatics (HDSGI)

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Self-OrganizingMap (SOM) is a neural network model that performs an ordered projection of a high dimensional input space in a low-dimensional topological structure. The process in which such mapping is formed is defined by the SOM algorithm, which is a competitive, unsupervised and nonparametric method, since it does not make any assumption about the input data distribution. The feature maps provided by this algorithm have been successfully applied for vector quantization, clustering and high dimensional data visualization processes. However, the initialization of the network topology and the selection of the SOM training parameters are two difficult tasks caused by the unknown distribution of the input signals. A misconfiguration of these parameters can generate a feature map of low-quality, so it is necessary to have some measure of the degree of adaptation of the SOM network to the input data model. The topologypreservation is the most common concept used to implement this measure. Several qualitative and quantitative methods have been proposed for measuring the degree of SOM topologypreservation, particularly using Kohonen's model. In this work, two methods for measuring the topologypreservation of the Growing Cell Structures (GCSs) model are proposed: the topographic function and the topology preserving map

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a novel approach to phonotactic LID, where instead of using soft-counts based on phoneme lattices, we use posteriogram to obtain n-gram counts. The high-dimensional vectors of counts are reduced to low-dimensional units for which we adapted the commonly used term i-vectors. The reduction is based on multinomial subspace modeling and is designed to work in the total-variability space. The proposed technique was tested on the NIST 2009 LRE set with better results to a system based on using soft-counts (Cavg on 30s: 3.15% vs 3.43%), and with very good results when fused with an acoustic i-vector LID system (Cavg on 30s acoustic 2.4% vs 1.25%). The proposed technique is also compared with another low dimensional projection system based on PCA. In comparison with the original soft-counts, the proposed technique provides better results, reduces the problems due to sparse counts, and avoids the process of using pruning techniques when creating the lattices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of data mining techniques for the gene profile discovery of diseases, such as cancer, is becoming usual in many researches. These techniques do not usually analyze the relationships between genes in depth, depending on the different variety of manifestations of the disease (related to patients). This kind of analysis takes a considerable amount of time and is not always the focus of the research. However, it is crucial in order to generate personalized treatments to fight the disease. Thus, this research focuses on finding a mechanism for gene profile analysis to be used by the medical and biologist experts. Results: In this research, the MedVir framework is proposed. It is an intuitive mechanism based on the visualization of medical data such as gene profiles, patients, clinical data, etc. MedVir, which is based on an Evolutionary Optimization technique, is a Dimensionality Reduction (DR) approach that presents the data in a three dimensional space. Furthermore, thanks to Virtual Reality technology, MedVir allows the expert to interact with the data in order to tailor it to the experience and knowledge of the expert.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-dimensional classification (MDC) is the supervised learning problem where an instance is associated with multiple classes, rather than with a single class, as in traditional classification problems. Since these classes are often strongly correlated, modeling the dependencies between them allows MDC methods to improve their performance – at the expense of an increased computational cost. In this paper we focus on the classifier chains (CC) approach for modeling dependencies, one of the most popular and highest-performing methods for multi-label classification (MLC), a particular case of MDC which involves only binary classes (i.e., labels). The original CC algorithm makes a greedy approximation, and is fast but tends to propagate errors along the chain. Here we present novel Monte Carlo schemes, both for finding a good chain sequence and performing efficient inference. Our algorithms remain tractable for high-dimensional data sets and obtain the best predictive performance across several real data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fully integrated semiconductor master-oscillator power-amplifiers (MOPA) with a tapered power amplifier are attractive sources for applications requiring high brightness. The geometrical design of the tapered amplifier is crucial to achieve the required power and beam quality. In this work we investigate by numerical simulation the role of the geometrical design in the beam quality and in the maximum achievable power. The simulations were performed with a Quasi-3D model which solves the complete steady-state semiconductor and thermal equations combined with a beam propagation method. The results indicate that large devices with wide taper angles produce higher power with better beam quality than smaller area designs, but at expenses of a higher injection current and lower conversion efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En la presente Tesis se ha llevado a cabo el contraste y desarrollo de metodologías que permitan mejorar el cálculo de las avenidas de proyecto y extrema empleadas en el cálculo de la seguridad hidrológica de las presas. En primer lugar se ha abordado el tema del cálculo de las leyes de frecuencia de caudales máximos y su extrapolación a altos periodos de retorno. Esta cuestión es de gran relevancia, ya que la adopción de estándares de seguridad hidrológica para las presas cada vez más exigentes, implica la utilización de periodos de retorno de diseño muy elevados cuya estimación conlleva una gran incertidumbre. Es importante, en consecuencia incorporar al cálculo de los caudales de diseño todas la técnicas disponibles para reducir dicha incertidumbre. Asimismo, es importante hacer una buena selección del modelo estadístico (función de distribución y procedimiento de ajuste) de tal forma que se garantice tanto su capacidad para describir el comportamiento de la muestra, como para predecir de manera robusta los cuantiles de alto periodo de retorno. De esta forma, se han realizado estudios a escala nacional con el objetivo de determinar el esquema de regionalización que ofrece mejores resultados para las características hidrológicas de las cuencas españolas, respecto a los caudales máximos anuales, teniendo en cuenta el numero de datos disponibles. La metodología utilizada parte de la identificación de regiones homogéneas, cuyos límites se han determinado teniendo en cuenta las características fisiográficas y climáticas de las cuencas, y la variabilidad de sus estadísticos, comprobando posteriormente su homogeneidad. A continuación, se ha seleccionado el modelo estadístico de caudales máximos anuales con un mejor comportamiento en las distintas zonas de la España peninsular, tanto para describir los datos de la muestra como para extrapolar a los periodos de retorno más altos. El proceso de selección se ha basado, entre otras cosas, en la generación sintética de series de datos mediante simulaciones de Monte Carlo, y el análisis estadístico del conjunto de resultados obtenido a partir del ajuste de funciones de distribución a estas series bajo distintas hipótesis. Posteriormente, se ha abordado el tema de la relación caudal-volumen y la definición de los hidrogramas de diseño en base a la misma, cuestión que puede ser de gran importancia en el caso de presas con grandes volúmenes de embalse. Sin embargo, los procedimientos de cálculo hidrológico aplicados habitualmente no tienen en cuenta la dependencia estadística entre ambas variables. En esta Tesis se ha desarrollado un procedimiento para caracterizar dicha dependencia estadística de una manera sencilla y robusta, representando la función de distribución conjunta del caudal punta y el volumen en base a la función de distribución marginal del caudal punta y la función de distribución condicionada del volumen respecto al caudal. Esta última se determina mediante una función de distribución log-normal, aplicando un procedimiento de ajuste regional. Se propone su aplicación práctica a través de un procedimiento de cálculo probabilístico basado en la generación estocástica de un número elevado de hidrogramas. La aplicación a la seguridad hidrológica de las presas de este procedimiento requiere interpretar correctamente el concepto de periodo de retorno aplicado a variables hidrológicas bivariadas. Para ello, se realiza una propuesta de interpretación de dicho concepto. El periodo de retorno se entiende como el inverso de la probabilidad de superar un determinado nivel de embalse. Al relacionar este periodo de retorno con las variables hidrológicas, el hidrograma de diseño de la presa deja de ser un único hidrograma para convertirse en una familia de hidrogramas que generan un mismo nivel máximo en el embalse, representados mediante una curva en el plano caudal volumen. Esta familia de hidrogramas de diseño depende de la propia presa a diseñar, variando las curvas caudal-volumen en función, por ejemplo, del volumen de embalse o la longitud del aliviadero. El procedimiento propuesto se ilustra mediante su aplicación a dos casos de estudio. Finalmente, se ha abordado el tema del cálculo de las avenidas estacionales, cuestión fundamental a la hora de establecer la explotación de la presa, y que puede serlo también para estudiar la seguridad hidrológica de presas existentes. Sin embargo, el cálculo de estas avenidas es complejo y no está del todo claro hoy en día, y los procedimientos de cálculo habitualmente utilizados pueden presentar ciertos problemas. El cálculo en base al método estadístico de series parciales, o de máximos sobre un umbral, puede ser una alternativa válida que permite resolver esos problemas en aquellos casos en que la generación de las avenidas en las distintas estaciones se deba a un mismo tipo de evento. Se ha realizado un estudio con objeto de verificar si es adecuada en España la hipótesis de homogeneidad estadística de los datos de caudal de avenida correspondientes a distintas estaciones del año. Asimismo, se han analizado los periodos estacionales para los que es más apropiado realizar el estudio, cuestión de gran relevancia para garantizar que los resultados sean correctos, y se ha desarrollado un procedimiento sencillo para determinar el umbral de selección de los datos de tal manera que se garantice su independencia, una de las principales dificultades en la aplicación práctica de la técnica de las series parciales. Por otra parte, la aplicación practica de las leyes de frecuencia estacionales requiere interpretar correctamente el concepto de periodo de retorno para el caso estacional. Se propone un criterio para determinar los periodos de retorno estacionales de forma coherente con el periodo de retorno anual y con una distribución adecuada de la probabilidad entre las distintas estaciones. Por último, se expone un procedimiento para el cálculo de los caudales estacionales, ilustrándolo mediante su aplicación a un caso de estudio. The compare and develop of a methodology in order to improve the extreme flow estimation for dam hydrologic security has been developed. First, the work has been focused on the adjustment of maximum peak flows distribution functions from which to extrapolate values for high return periods. This has become a major issue as the adoption of stricter standards on dam hydrologic security involves estimation of high design return periods which entails great uncertainty. Accordingly, it is important to incorporate all available techniques for the estimation of design peak flows in order to reduce this uncertainty. Selection of the statistical model (distribution function and adjustment method) is also important since its ability to describe the sample and to make solid predictions for high return periods quantiles must be guaranteed. In order to provide practical application of previous methodologies, studies have been developed on a national scale with the aim of determining a regionalization scheme which features best results in terms of annual maximum peak flows for hydrologic characteristics of Spanish basins taking into account the length of available data. Applied methodology starts with the delimitation of regions taking into account basin’s physiographic and climatic characteristics and the variability of their statistical properties, and continues with their homogeneity testing. Then, a statistical model for maximum annual peak flows is selected with the best behaviour for the different regions in peninsular Spain in terms of describing sample data and making solid predictions for high return periods. This selection has been based, among others, on synthetic data series generation using Monte Carlo simulations and statistical analysis of results from distribution functions adjustment following different hypothesis. Secondly, the work has been focused on the analysis of the relationship between peak flow and volume and how to define design flood hydrographs based on this relationship which can be highly important for large volume reservoirs. However, commonly used hydrologic procedures do not take statistical dependence between these variables into account. A simple and sound method for statistical dependence characterization has been developed by the representation of a joint distribution function of maximum peak flow and volume which is based on marginal distribution function of peak flow and conditional distribution function of volume for a given peak flow. The last one is determined by a regional adjustment procedure of a log-normal distribution function. Practical application is proposed by a probabilistic estimation procedure based on stochastic generation of a large number of hydrographs. The use of this procedure for dam hydrologic security requires a proper interpretation of the return period concept applied to bivariate hydrologic data. A standard is proposed in which it is understood as the inverse of the probability of exceeding a determined reservoir level. When relating return period and hydrological variables the only design flood hydrograph changes into a family of hydrographs which generate the same maximum reservoir level and that are represented by a curve in the peak flow-volume two-dimensional space. This family of design flood hydrographs depends on the dam characteristics as for example reservoir volume or spillway length. Two study cases illustrate the application of the developed methodology. Finally, the work has been focused on the calculation of seasonal floods which are essential when determining the reservoir operation and which can be also fundamental in terms of analysing the hydrologic security of existing reservoirs. However, seasonal flood calculation is complex and nowadays it is not totally clear. Calculation procedures commonly used may present certain problems. Statistical partial duration series, or peaks over threshold method, can be an alternative approach for their calculation that allow to solve problems encountered when the same type of event is responsible of floods in different seasons. A study has been developed to verify the hypothesis of statistical homogeneity of peak flows for different seasons in Spain. Appropriate seasonal periods have been analyzed which is highly relevant to guarantee correct results. In addition, a simple procedure has been defined to determine data selection threshold on a way that ensures its independency which is one of the main difficulties in practical application of partial series. Moreover, practical application of seasonal frequency laws requires a correct interpretation of the concept of seasonal return period. A standard is proposed in order to determine seasonal return periods coherently with the annual return period and with an adequate seasonal probability distribution. Finally a methodology is proposed to calculate seasonal peak flows. A study case illustrates the application of the proposed methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los nudos son los defectos que más disminuyen la resistencia de piezas de madera en la escala estructural, al ocasionar no solo una discontinuidad material, sino también la desviación de las fibras que se encuentran a su alrededor. En la década de los 80 se introdujo la teoría de la analogía fluido-fibra, como un método que aproximaba adecuadamente todas estas desviaciones. Sin embargo en su aplicación tridimensional, nunca se consideraron las diferencias geométricas en el sentido perpendicular al eje longitudinal de las piezas estructurales, lo cual imposibilitaba la simulación numérica de algunos de los principales tipos de nudos, y disminuía la precisión obtenida en aquellos nudos en los que la modelización sí era viable. En este trabajo se propone un modelo programado en lenguaje paramétrico de un software de elementos finitos que, bajo una formulación en tres dimensiones más general, permitirá estudiar de forma automatizada el comportamiento estructural de la madera bajo la influencia de los principales tipos de nudos, a partir de la geometría visible de los mismos y la posición de la médula en la pieza, y el cual ha sido contrastado experimentalmente, simulando de forma muy precisa el comportamiento mecánico de vigas sometidas a ensayos de flexión a cuatro puntos. Knots are the defects that most reduce the strength of lumber at the structural level, by causing not only a material discontinuity but also the deviation of the fibers that surround them. In the 80's it was introduced the theory of the flow-grain analogy as a method to approximating adequately these deviations. However, in three-dimensional applications, geometrical differences in the direction perpendicular to the longitudinal axis of the structural specimens were never considered before, which prevented the numerical simulation of some of the main types of knots, and decreased the achieved precision in those kind of knots where modeling itself was possible. This paper purposes a parametric model programmed in a finite element software, in the way that with a more general three-dimensional formulation, an automated study of the structural behavior of timber under the influence of the main types of knots is allowed by only knowing the visible geometry of such defects, and the position of the pith. Furthermore that has been confirmed experimentally obtaining very accurately simulations of the mechanical behavior of beams under four points bending test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolutionary search algorithms have become an essential asset in the algorithmic toolbox for solving high-dimensional optimization problems in across a broad range of bioinformatics problems. Genetic algorithms, the most well-known and representative evolutionary search technique, have been the subject of the major part of such applications. Estimation of distribution algorithms (EDAs) offer a novel evolutionary paradigm that constitutes a natural and attractive alternative to genetic algorithms. They make use of a probabilistic model, learnt from the promising solutions, to guide the search process. In this paper, we set out a basic taxonomy of EDA techniques, underlining the nature and complexity of the probabilistic model of each EDA variant. We review a set of innovative works that make use of EDA techniques to solve challenging bioinformatics problems, emphasizing the EDA paradigm's potential for further research in this domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pragmatism is the leading motivation of regularization. We can understand regularization as a modification of the maximum-likelihood estimator so that a reasonable answer could be given in an unstable or ill-posed situation. To mention some typical examples, this happens when fitting parametric or non-parametric models with more parameters than data or when estimating large covariance matrices. Regularization is usually used, in addition, to improve the bias-variance tradeoff of an estimation. Then, the definition of regularization is quite general, and, although the introduction of a penalty is probably the most popular type, it is just one out of multiple forms of regularization. In this dissertation, we focus on the applications of regularization for obtaining sparse or parsimonious representations, where only a subset of the inputs is used. A particular form of regularization, L1-regularization, plays a key role for reaching sparsity. Most of the contributions presented here revolve around L1-regularization, although other forms of regularization are explored (also pursuing sparsity in some sense). In addition to present a compact review of L1-regularization and its applications in statistical and machine learning, we devise methodology for regression, supervised classification and structure induction of graphical models. Within the regression paradigm, we focus on kernel smoothing learning, proposing techniques for kernel design that are suitable for high dimensional settings and sparse regression functions. We also present an application of regularized regression techniques for modeling the response of biological neurons. Supervised classification advances deal, on the one hand, with the application of regularization for obtaining a na¨ıve Bayes classifier and, on the other hand, with a novel algorithm for brain-computer interface design that uses group regularization in an efficient manner. Finally, we present a heuristic for inducing structures of Gaussian Bayesian networks using L1-regularization as a filter. El pragmatismo es la principal motivación de la regularización. Podemos entender la regularización como una modificación del estimador de máxima verosimilitud, de tal manera que se pueda dar una respuesta cuando la configuración del problema es inestable. A modo de ejemplo, podemos mencionar el ajuste de modelos paramétricos o no paramétricos cuando hay más parámetros que casos en el conjunto de datos, o la estimación de grandes matrices de covarianzas. Se suele recurrir a la regularización, además, para mejorar el compromiso sesgo-varianza en una estimación. Por tanto, la definición de regularización es muy general y, aunque la introducción de una función de penalización es probablemente el método más popular, éste es sólo uno de entre varias posibilidades. En esta tesis se ha trabajado en aplicaciones de regularización para obtener representaciones dispersas, donde sólo se usa un subconjunto de las entradas. En particular, la regularización L1 juega un papel clave en la búsqueda de dicha dispersión. La mayor parte de las contribuciones presentadas en la tesis giran alrededor de la regularización L1, aunque también se exploran otras formas de regularización (que igualmente persiguen un modelo disperso). Además de presentar una revisión de la regularización L1 y sus aplicaciones en estadística y aprendizaje de máquina, se ha desarrollado metodología para regresión, clasificación supervisada y aprendizaje de estructura en modelos gráficos. Dentro de la regresión, se ha trabajado principalmente en métodos de regresión local, proponiendo técnicas de diseño del kernel que sean adecuadas a configuraciones de alta dimensionalidad y funciones de regresión dispersas. También se presenta una aplicación de las técnicas de regresión regularizada para modelar la respuesta de neuronas reales. Los avances en clasificación supervisada tratan, por una parte, con el uso de regularización para obtener un clasificador naive Bayes y, por otra parte, con el desarrollo de un algoritmo que usa regularización por grupos de una manera eficiente y que se ha aplicado al diseño de interfaces cerebromáquina. Finalmente, se presenta una heurística para inducir la estructura de redes Bayesianas Gaussianas usando regularización L1 a modo de filtro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En 1905, aparecen en la revista "Annalen der physik" tres artículos que revolucionarán las ciencias físicas y pondrán en jaque los asentados conceptos newtonianos de Espacio y Tiempo. La formulación de la Teoría de la Relatividad por Albert Einstein pone en crisis el valor absoluto de estos conceptos, y permite proponer nuevas reflexiones a propósito de su concepción dentro del campo de la física. Esta revolución ¿podría extrapolarse al campo de la arquitectura, donde Espacio y Tiempo tienen un papel protagonista? Hay que entender la complejidad del hecho arquitectónico y las innumerables variables que participan de su definición. Se estudia en esta Tesis Doctoral un aspecto muy concreto: cómo un paradigma (la Teoría de la Relatividad) puede intervenir y modificar, o no, la Arquitectura. Se plantea para ello ir al origen; desentrañar el momento de interacción entre la Teoría de la Relatividad y la Teoría de la Arquitectura, que permita determinar si aquella influyó sobre ésta en los escritos teóricos de las vanguardias aplicados a la Arquitectura. “Después de Einstein. Una arquitectura para una teoría” buscará los puntos de conexión de la Teoría de la Relatividad con la teoría arquitectónica de las vanguardias de principio del siglo XX, su influencia, la contaminación entre una y otra, con posibles resultados arquitectónicos a partir de esta interacción, capaz de definir nuevos argumentos formales para un nuevo lenguaje enArquitectura. Annalen der physik Después de Einstein. Una arquitectura para una teoría Para ello la Tesis se estructura en cuatro capítulos. El primero expone el ámbito geográfico y cronológico donde se desarrolla la Teoría de la Relatividad con la repercusión teórica que tiene para el arte, en función de una nueva definición de espacio vinculado al tiempo, como evento que se desarrolla en un ámbito cuatridimensional; la indeterminación de las medidas de espacio y de las medidas de tiempo, y la importancia de entender la materia como energía. El segundo capítulo estudia los movimientos de vanguardia coetáneos a la eclosión de la Relatividad, enmarcados en su ámbito geográfico más próximo. El cubismo se muestra como movimiento que participa ocasionalmente de las matemáticas y la geometría, bajo el influjo del científico Henri Poincaré y las geometrías no euclidianas. El futurismo indaga en los avances de la ciencia desde una cierta lejanía, cierta falta de rigor o profundidad científica para extraer las leyes de su nuevo idealismo plástico constructivo, definiendo e interpretando su Universo a partir de los avances de la ciencia, en respuesta a la crisis del espacio y del tiempo newtonianos. El lenguaje científico se encuentra presente en conceptos como "simultaneidad" (Boccioni), "expansión esférica de la luz en el espacio" (Severini y Carrá), "cuatridimensionalidad", "espacio-tiempo", "aire-luz-fuerza", "materia y energía" que paralelamente conforman el cuerpo operacional de la teoría de Einstein. Si bien no es posible atribuir a la Teoría de la Relatividad un papel protagonista como referente para el pensamiento artístico, en 1936, con la aparición del manifiesto Dimensionista, se atribuyen explícitamente a las teorías de Einstein las nuevas ideas de espacio-tiempo del espíritu europeo seguido por cubistas y futuristas. El tercer capítulo describe cómo la Teoría de la Relatividad llegó a ser fuente de inspiración para la Teoría de la Arquitectura. Estructurado en tres subcapítulos, se estudia el autor principal que aportó para la Arquitectura conceptos e ideas extrapoladas de la Teoría de la Relatividad después de su estudio e interpretación (Van Doesburg), dónde se produjeron las influencias y puntos de contacto (Lissitzky, Eggeling, Moholy-Nagy) y cómo fueron difundidas a través de la arquitectura (Einsteinturm de Mendelsohn) y de las revistas especializadas. El cuarto capítulo extrae las conclusiones del estudio realizado en esta Tesis, que bien pudiera resumir MoholyNagy en su texto "Vision inmotion" (1946) al comentar: "Ya que el "espacio-tiempo" puede ser un término engañoso, tiene que hacerse especialmente hincapié en que los problemas de espacio-tiempo en el arte no están necesariamente basados en la Teoría de la Relatividad de Einstein. Esto no tiene intención de descartar la relevancia de su teoría para las artes. Pero los artistas y los laicos rara vez tienen el conocimiento matemático para visualizar en fórmulas científicas las analogías con su propio trabajo. La terminología de Einstein del "espacio-tiempo" y la "relatividad" ha sido absorbida por nuestro lenguaje diario." ABSTRACT. "AFTER EINSTEIN:ANARCHITECTUREFORATHEORY." In 1905, three articles were published in the journal "Annalen der Physik ". They revolutionized physical sciences and threw into crisis the newtonian concepts of Space and Time. The formulation of the Theory of Relativity by Albert Einstein put a strain on the absolute value of these concepts, and proposed new reflections about them in the field of Physics. Could this revolution be extrapolated to the field of Architecture, where Space and Time have a main role? It is necessary to understand the complexity of architecture and the countless variables involved in its definition. For this reason, in this PhD. Thesis, we study a specific aspect: how a paradigm (Theory of Relativity) can intervene and modify -or not- Architecture. It is proposed to go back to the origin; to unravel the moment in which the interaction between the Theory of Relativity and the Theory of Architecture takes place, to determine whether the Theory of Relativity influenced on the theoretical avant-garde writings applied to Architecture. "After Einstein.An architecture for a theory " will search the connection points between the Theory of Relativity and architectural avant-garde theory of the early twentieth century, the influence and contamination between them, giving rise to new architectures that define new formal arguments for a new architectural language. Annalen der Physik This thesis is divided into four chapters. The first one describes the geographical and chronological scope in which the Theory of Relativity is developed showing its theoretical implications in the field of art, according to a new definition of Space linked to Time, as an event that takes place in a fourdimensional space; the indetermination of the measurement of space and time, and the importance of understanding "matter" as "energy". The second chapter examines the avant-garde movements contemporary to the theory of relativity. Cubism is shown as an artist movement that occasionally participates in mathematics and geometry, under the influence of Henri Poincaré and non-Euclidean geometries. Futurism explores the advances of science at a certain distance, with lack of scientific rigor to extract the laws of their new plastic constructive idealism. Scientific language is present in concepts like "simultaneity" (Boccioni), "expanding light in space" (Severini and Carra), "four-dimensional space", "space-time", "light-air-force," "matter and energy" similar to the operational concepts of Einstein´s theory. While it is not possible to attribute a leading role to the Theory of Relativity, as a benchmark for artistic laws, in 1936, with the publication of the Dimensionist manifest, the new ideas of space-time followed by cubist and futurist were attributed to the Einstein's theory. The third chapter describes how the Theory of Relativity became an inspiration for the architectural theory. Structured into three subsections, we study the main author who studied the theory of relativity and ,as a consequence, contributed with some concepts and ideas to the theory of architecture (Van Doesburg), where influences and contact points took place (Lissitzky, Eggeling, Moholy-Nagy) and how were disseminated throughArchitecture (Einsteinturm, by Mendelsohn) and journals. The fourth chapter draws the conclusions of this PhD. Thesis, which could be well summarized by Moholy Nagy in his text "Vision in Motion" (1946): vi Since "space-time" can be a misleading term, it especially has to be emphasized that the space-time problems in the arts are not necessarily based upon Einstein´s Theory of Relativity. This is not meant to discount the relevance of his theory to the arts. But artists and laymen seldom have the mathematical knowledge to visualize in scientific formulae the analogies to their own work. Einstein's terminology of "space-time" and "relativity" has been absorbed by our daily language.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Probabilistic modeling is the de�ning characteristic of estimation of distribution algorithms (EDAs) which determines their behavior and performance in optimization. Regularization is a well-known statistical technique used for obtaining an improved model by reducing the generalization error of estimation, especially in high-dimensional problems. `1-regularization is a type of this technique with the appealing variable selection property which results in sparse model estimations. In this thesis, we study the use of regularization techniques for model learning in EDAs. Several methods for regularized model estimation in continuous domains based on a Gaussian distribution assumption are presented, and analyzed from di�erent aspects when used for optimization in a high-dimensional setting, where the population size of EDA has a logarithmic scale with respect to the number of variables. The optimization results obtained for a number of continuous problems with an increasing number of variables show that the proposed EDA based on regularized model estimation performs a more robust optimization, and is able to achieve signi�cantly better results for larger dimensions than other Gaussian-based EDAs. We also propose a method for learning a marginally factorized Gaussian Markov random �eld model using regularization techniques and a clustering algorithm. The experimental results show notable optimization performance on continuous additively decomposable problems when using this model estimation method. Our study also covers multi-objective optimization and we propose joint probabilistic modeling of variables and objectives in EDAs based on Bayesian networks, speci�cally models inspired from multi-dimensional Bayesian network classi�ers. It is shown that with this approach to modeling, two new types of relationships are encoded in the estimated models in addition to the variable relationships captured in other EDAs: objectivevariable and objective-objective relationships. An extensive experimental study shows the e�ectiveness of this approach for multi- and many-objective optimization. With the proposed joint variable-objective modeling, in addition to the Pareto set approximation, the algorithm is also able to obtain an estimation of the multi-objective problem structure. Finally, the study of multi-objective optimization based on joint probabilistic modeling is extended to noisy domains, where the noise in objective values is represented by intervals. A new version of the Pareto dominance relation for ordering the solutions in these problems, namely �-degree Pareto dominance, is introduced and its properties are analyzed. We show that the ranking methods based on this dominance relation can result in competitive performance of EDAs with respect to the quality of the approximated Pareto sets. This dominance relation is then used together with a method for joint probabilistic modeling based on `1-regularization for multi-objective feature subset selection in classi�cation, where six di�erent measures of accuracy are considered as objectives with interval values. The individual assessment of the proposed joint probabilistic modeling and solution ranking methods on datasets with small-medium dimensionality, when using two di�erent Bayesian classi�ers, shows that comparable or better Pareto sets of feature subsets are approximated in comparison to standard methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many existing engineering works model the statistical characteristics of the entities under study as normal distributions. These models are eventually used for decision making, requiring in practice the definition of the classification region corresponding to the desired confidence level. Surprisingly enough, however, a great amount of computer vision works using multidimensional normal models leave unspecified or fail to establish correct confidence regions due to misconceptions on the features of Gaussian functions or to wrong analogies with the unidimensional case. The resulting regions incur in deviations that can be unacceptable in high-dimensional models. Here we provide a comprehensive derivation of the optimal confidence regions for multivariate normal distributions of arbitrary dimensionality. To this end, firstly we derive the condition for region optimality of general continuous multidimensional distributions, and then we apply it to the widespread case of the normal probability density function. The obtained results are used to analyze the confidence error incurred by previous works related to vision research, showing that deviations caused by wrong regions may turn into unacceptable as dimensionality increases. To support the theoretical analysis, a quantitative example in the context of moving object detection by means of background modeling is given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origins for this work arise in response to the increasing need for biologists and doctors to obtain tools for visual analysis of data. When dealing with multidimensional data, such as medical data, the traditional data mining techniques can be a tedious and complex task, even to some medical experts. Therefore, it is necessary to develop useful visualization techniques that can complement the expert’s criterion, and at the same time visually stimulate and make easier the process of obtaining knowledge from a dataset. Thus, the process of interpretation and understanding of the data can be greatly enriched. Multidimensionality is inherent to any medical data, requiring a time-consuming effort to get a clinical useful outcome. Unfortunately, both clinicians and biologists are not trained in managing more than four dimensions. Specifically, we were aimed to design a 3D visual interface for gene profile analysis easy in order to be used both by medical and biologist experts. In this way, a new analysis method is proposed: MedVir. This is a simple and intuitive analysis mechanism based on the visualization of any multidimensional medical data in a three dimensional space that allows interaction with experts in order to collaborate and enrich this representation. In other words, MedVir makes a powerful reduction in data dimensionality in order to represent the original information into a three dimensional environment. The experts can interact with the data and draw conclusions in a visual and quickly way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Territory or zone design processes entail partitioning a geographic space, organized as a set of areal units, into different regions or zones according to a specific set of criteria that are dependent on the application context. In most cases, the aim is to create zones of approximately equal sizes (zones with equal numbers of inhabitants, same average sales, etc.). However, some of the new applications that have emerged, particularly in the context of sustainable development policies, are aimed at defining zones of a predetermined, though not necessarily similar, size. In addition, the zones should be built around a given set of seeds. This type of partitioning has not been sufficiently researched; therefore, there are no known approaches for automated zone delimitation. This study proposes a new method based on a discrete version of the adaptive additively weighted Voronoi diagram that makes it possible to partition a two-dimensional space into zones of specific sizes, taking both the position and the weight of each seed into account. The method consists of repeatedly solving a traditional additively weighted Voronoi diagram, so that each seed?s weight is updated at every iteration. The zones are geographically connected using a metric based on the shortest path. Tests conducted on the extensive farming system of three municipalities in Castile-La Mancha (Spain) have established that the proposed heuristic procedure is valid for solving this type of partitioning problem. Nevertheless, these tests confirmed that the given seed position determines the spatial configuration the method must solve and this may have a great impact on the resulting partition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SMS 3D (simultaneous multiple surfaces in their three-dimensional version) is a well-known design method comprising two freeform surfaces that allow the perfect coupling of two wavefronts with another two. The design algorithm provides a collection of line pairs on both surfaces (called SMS spines), whose three-dimensional shape seems arbitrary at first sight. This paper shows that the shapes of the spines are partially governed by applying the étendue conservation theorem to the biparametric bundle of rays linking the paired spines, which is one lesser known étendue invariants found by Poincaré. The resulting formulae for the spines in three-dimensional space happen to coincide with the conventional étendue formulas of two-dimensional geometry, like for instance, the Hottel formula.