23 resultados para Hierarchical clustering model
em Universidad Politécnica de Madrid
Resumo:
Objectives: A recently introduced pragmatic scheme promises to be a useful catalog of interneuron names.We sought to automatically classify digitally reconstructed interneuronal morphologies according tothis scheme. Simultaneously, we sought to discover possible subtypes of these types that might emergeduring automatic classification (clustering). We also investigated which morphometric properties weremost relevant for this classification.Materials and methods: A set of 118 digitally reconstructed interneuronal morphologies classified into thecommon basket (CB), horse-tail (HT), large basket (LB), and Martinotti (MA) interneuron types by 42 of theworld?s leading neuroscientists, quantified by five simple morphometric properties of the axon and fourof the dendrites. We labeled each neuron with the type most commonly assigned to it by the experts. Wethen removed this class information for each type separately, and applied semi-supervised clustering tothose cells (keeping the others? cluster membership fixed), to assess separation from other types and lookfor the formation of new groups (subtypes). We performed this same experiment unlabeling the cells oftwo types at a time, and of half the cells of a single type at a time. The clustering model is a finite mixtureof Gaussians which we adapted for the estimation of local (per-cluster) feature relevance. We performedthe described experiments on three different subsets of the data, formed according to how many expertsagreed on type membership: at least 18 experts (the full data set), at least 21 (73 neurons), and at least26 (47 neurons).Results: Interneurons with more reliable type labels were classified more accurately. We classified HTcells with 100% accuracy, MA cells with 73% accuracy, and CB and LB cells with 56% and 58% accuracy,respectively. We identified three subtypes of the MA type, one subtype of CB and LB types each, andno subtypes of HT (it was a single, homogeneous type). We got maximum (adapted) Silhouette widthand ARI values of 1, 0.83, 0.79, and 0.42, when unlabeling the HT, CB, LB, and MA types, respectively,confirming the quality of the formed cluster solutions. The subtypes identified when unlabeling a singletype also emerged when unlabeling two types at a time, confirming their validity. Axonal morphometricproperties were more relevant that dendritic ones, with the axonal polar histogram length in the [pi, 2pi) angle interval being particularly useful.Conclusions: The applied semi-supervised clustering method can accurately discriminate among CB, HT, LB, and MA interneuron types while discovering potential subtypes, and is therefore useful for neuronal classification. The discovery of potential subtypes suggests that some of these types are more heteroge-neous that previously thought. Finally, axonal variables seem to be more relevant than dendritic ones fordistinguishing among the CB, HT, LB, and MA interneuron types.
Resumo:
Esta Tesis tiene como objetivo principal el desarrollo de métodos de identificación del daño que sean robustos y fiables, enfocados a sistemas estructurales experimentales, fundamentalmente a las estructuras de hormigón armado reforzadas externamente con bandas fibras de polímeros reforzados (FRP). El modo de fallo de este tipo de sistema estructural es crítico, pues generalmente es debido a un despegue repentino y frágil de la banda del refuerzo FRP originado en grietas intermedias causadas por la flexión. La detección de este despegue en su fase inicial es fundamental para prevenir fallos futuros, que pueden ser catastróficos. Inicialmente, se lleva a cabo una revisión del método de la Impedancia Electro-Mecánica (EMI), de cara a exponer sus capacidades para la detección de daño. Una vez la tecnología apropiada es seleccionada, lo que incluye un analizador de impedancias así como novedosos sensores PZT para monitorización inteligente, se ha diseñado un procedimiento automático basado en los registros de impedancias de distintas estructuras de laboratorio. Basándonos en el hecho de que las mediciones de impedancias son posibles gracias a una colocación adecuada de una red de sensores PZT, la estimación de la presencia de daño se realiza analizando los resultados de distintos indicadores de daño obtenidos de la literatura. Para que este proceso sea automático y que no sean necesarios conocimientos previos sobre el método EMI para realizar un experimento, se ha diseñado e implementado un Interfaz Gráfico de Usuario, transformando la medición de impedancias en un proceso fácil e intuitivo. Se evalúa entonces el daño a través de los correspondientes índices de daño, intentando estimar no sólo su severidad, sino también su localización aproximada. El desarrollo de estos experimentos en cualquier estructura genera grandes cantidades de datos que han de ser procesados, y algunas veces los índices de daño no son suficientes para una evaluación completa de la integridad de una estructura. En la mayoría de los casos se pueden encontrar patrones de daño en los datos, pero no se tiene información a priori del estado de la estructura. En este punto, se ha hecho una importante investigación en técnicas de reconocimiento de patrones particularmente en aprendizaje no supervisado, encontrando aplicaciones interesantes en el campo de la medicina. De ahí surge una idea creativa e innovadora: detectar y seguir la evolución del daño en distintas estructuras como si se tratase de un cáncer propagándose por el cuerpo humano. En ese sentido, las lecturas de impedancias se emplean como información intrínseca de la salud de la propia estructura, de forma que se pueden aplicar las mismas técnicas que las empleadas en la investigación del cáncer. En este caso, se ha aplicado un algoritmo de clasificación jerárquica dado que ilustra además la clasificación de los datos de forma gráfica, incluyendo información cualitativa y cuantitativa sobre el daño. Se ha investigado la efectividad de este procedimiento a través de tres estructuras de laboratorio, como son una viga de aluminio, una unión atornillada de aluminio y un bloque de hormigón reforzado con FRP. La primera ayuda a mostrar la efectividad del método en sencillos escenarios de daño simple y múltiple, de forma que las conclusiones extraídas se aplican sobre los otros dos, diseñados para simular condiciones de despegue en distintas estructuras. Demostrada la efectividad del método de clasificación jerárquica de lecturas de impedancias, se aplica el procedimiento sobre las estructuras de hormigón armado reforzadas con bandas de FRP objeto de esta tesis, detectando y clasificando cada estado de daño. Finalmente, y como alternativa al anterior procedimiento, se propone un método para la monitorización continua de la interfase FRP-Hormigón, a través de una red de sensores FBG permanentemente instalados en dicha interfase. De esta forma, se obtienen medidas de deformación de la interfase en condiciones de carga continua, para ser implementadas en un modelo de optimización multiobjetivo, cuya solución se haya por medio de una expansión multiobjetivo del método Particle Swarm Optimization (PSO). La fiabilidad de este último método de detección se investiga a través de sendos ejemplos tanto numéricos como experimentales. ABSTRACT This thesis aims to develop robust and reliable damage identification methods focused on experimental structural systems, in particular Reinforced Concrete (RC) structures externally strengthened with Fiber Reinforced Polymers (FRP) strips. The failure mode of this type of structural system is critical, since it is usually due to sudden and brittle debonding of the FRP reinforcement originating from intermediate flexural cracks. Detection of the debonding in its initial stage is essential thus to prevent future failure, which might be catastrophic. Initially, a revision of the Electro-Mechanical Impedance (EMI) method is carried out, in order to expose its capabilities for local damage detection. Once the appropriate technology is selected, which includes impedance analyzer as well as novel PZT sensors for smart monitoring, an automated procedure has been design based on the impedance signatures of several lab-scale structures. On the basis that capturing impedance measurements is possible thanks to an adequately deployed PZT sensor network, the estimation of damage presence is done by analyzing the results of different damage indices obtained from the literature. In order to make this process automatic so that it is not necessary a priori knowledge of the EMI method to carry out an experimental test, a Graphical User Interface has been designed, turning the impedance measurements into an easy and intuitive procedure. Damage is then assessed through the analysis of the corresponding damage indices, trying to estimate not only the damage severity, but also its approximate location. The development of these tests on any kind of structure generates large amounts of data to be processed, and sometimes the information provided by damage indices is not enough to achieve a complete analysis of the structural health condition. In most of the cases, some damage patterns can be found in the data, but none a priori knowledge of the health condition is given for any structure. At this point, an important research on pattern recognition techniques has been carried out, particularly on unsupervised learning techniques, finding interesting applications in the medicine field. From this investigation, a creative and innovative idea arose: to detect and track the evolution of damage in different structures, as if it were a cancer propagating through a human body. In that sense, the impedance signatures are used to give intrinsic information of the health condition of the structure, so that the same clustering algorithms applied in the cancer research can be applied to the problem addressed in this dissertation. Hierarchical clustering is then applied since it also provides a graphical display of the clustered data, including quantitative and qualitative information about damage. The performance of this approach is firstly investigated using three lab-scale structures, such as a simple aluminium beam, a bolt-jointed aluminium beam and an FRP-strengthened concrete specimen. The first one shows the performance of the method on simple single and multiple damage scenarios, so that the first conclusions can be extracted and applied to the other two experimental tests, which are designed to simulate a debonding condition on different structures. Once the performance of the impedance-based hierarchical clustering method is proven to be successful, it is then applied to the structural system studied in this dissertation, the RC structures externally strengthened with FRP strips, where the debonding failure in the interface between the FRP and the concrete is successfully detected and classified, proving thus the feasibility of this method. Finally, as an alternative to the previous approach, a continuous monitoring procedure of the FRP-Concrete interface is proposed, based on an FBGsensors Network permanently deployed within that interface. In this way, strain measurements can be obtained under controlled loading conditions, and then they are used in order to implement a multi-objective model updating method solved by a multi-objective expansion of the Particle Swarm Optimization (PSO) method. The feasibility of this last proposal is investigated and successfully proven on both numerical and experimental RC beams strengthened with FRP.
Resumo:
El WCTR es un congreso de reconocido prestigio internacional en el ámbito de la investigación del transporte y aunque las actas publicadas están en formato digital y sin ISSN ni ISBN, lo consideramos lo suficientemente importante como para que se considere en los indicadores. This paper aims at describing how multilateral cooperation policies are influencing national transport policies in developing countries. It considers the evolution of national transport policies and institutional frameworks in Algeria, Morocco and Tunisia in the last 10 years, and analyses the influence that EU cooperation programmes (particularly those within the Euromed programme initiative) and international coordination activities have played in the evolution towards efficient, sustainable transport systems in those countries. Notwithstanding the significant socioeconomic, political and institutional differences among the three countries, three major traits are common to the transport policy framework in all cases: a focus on megaprojects; substitution of traditional ministerial services by ad hoc public agencies to develop those megaprojects, and progressive involvement of international private players for the operation (and eventually the design and construction) of new projects, focusing on know-how transfer rather than investment needs. The hypotheses is that these similarities are largely due to the influence of the international cooperation promoted by the European Union since the mid- 1990s. The new decision making situation is characterized by the involvement of two new relevant stakeholders, the EU and a limited number of global transport operators. The hierarchical governance model evolves towards more complex structures, which explain the three common traits mentioned above. International coordination has been crucial for developing national transport visions, which are coherent with a regional, transnational system.
Resumo:
Automatic 2D-to-3D conversion is an important application for filling the gap between the increasing number of 3D displays and the still scant 3D content. However, existing approaches have an excessive computational cost that complicates its practical application. In this paper, a fast automatic 2D-to-3D conversion technique is proposed, which uses a machine learning framework to infer the 3D structure of a query color image from a training database with color and depth images. Assuming that photometrically similar images have analogous 3D structures, a depth map is estimated by searching the most similar color images in the database, and fusing the corresponding depth maps. Large databases are desirable to achieve better results, but the computational cost also increases. A clustering-based hierarchical search using compact SURF descriptors to characterize images is proposed to drastically reduce search times. A significant computational time improvement has been obtained regarding other state-of-the-art approaches, maintaining the quality results.
Resumo:
Large-scale structure formation can be modeled as a nonlinear process that transfers energy from the largest scales to successively smaller scales until it is dissipated, in analogy with Kolmogorov’s cascade model of incompressible turbulence. However, cosmic turbulence is very compressible, and vorticity plays a secondary role in it. The simplest model of cosmic turbulence is the adhesion model, which can be studied perturbatively or adapting to it Kolmogorov’s non-perturbative approach to incompressible turbulence. This approach leads to observationally testable predictions, e.g., to the power-law exponent of the matter density two-point correlation function.
Resumo:
OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web
1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS
Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs.
These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools.
Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate.
However, linguistic annotation tools have still some limitations, which can be summarised as follows:
1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.).
2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts.
3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc.
A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved.
In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool.
Therefore, it would be quite useful to find a way to
(i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools;
(ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate.
Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned.
Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section.
2. GOALS OF THE PRESENT WORK
As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based
Resumo:
This article describes a knowledge-based method for generating multimedia descriptions that summarize the behavior of dynamic systems. We designed this method for users who monitor the behavior of a dynamic system with the help of sensor networks and make decisions according to prefixed management goals. Our method generates presentations using different modes such as text in natural language, 2D graphics and 3D animations. The method uses a qualitative representation of the dynamic system based on hierarchies of components and causal influences. The method includes an abstraction generator that uses the system representation to find and aggregate relevant data at an appropriate level of abstraction. In addition, the method includes a hierarchical planner to generate a presentation using a model with dis- course patterns. Our method provides an efficient and flexible solution to generate concise and adapted multimedia presentations that summarize thousands of time series. It is general to be adapted to differ- ent dynamic systems with acceptable knowledge acquisition effort by reusing and adapting intuitive rep- resentations. We validated our method and evaluated its practical utility by developing several models for an application that worked in continuous real time operation for more than 1 year, summarizing sen- sor data of a national hydrologic information system in Spain.
Resumo:
This paper describes a model of persistence in (C)LP languages and two different and practically very useful ways to implement this model in current systems. The fundamental idea is that persistence is a characteristic of certain dynamic predicates (Le., those which encapsulate state). The main effect of declaring a predicate persistent is that the dynamic changes made to such predicates persist from one execution to the next one. After proposing a syntax for declaring persistent predicates, a simple, file-based implementation of the concept is presented and some examples shown. An additional implementation is presented which stores persistent predicates in an external datábase. The abstraction of the concept of persistence from its implementation allows developing applications which can store their persistent predicates alternatively in files or databases with only a few simple changes to a declaration stating the location and modality used for persistent storage. The paper presents the model, the implementation approach in both the cases of using files and relational databases, a number of optimizations of the process (using information obtained from static global analysis and goal clustering), and performance results from an implementation of these ideas.
Resumo:
This paper describes a model of persistence in (C)LP languages and two different and practically very useful ways to implement this model in current systems. The fundamental idea is that persistence is a characteristic of certain dynamic predicates (i.e., those which encapsulate state). The main effect of declaring a predicate persistent is that the dynamic changes made to such predicates persist from one execution to the next one. After proposing a syntax for declaring persistent predicates, a simple, file-based implementation of the concept is presented and some examples shown. An additional implementation is presented which stores persistent predicates in an external database. The abstraction of the concept of persistence from its implementation allows developing applications which can store their persistent predicates alternatively in files or databases with only a few simple changes to a declaration stating the location and modality used for persistent storage. The paper presents the model, the implementation approach in both the cases of using files and relational databases, a number of optimizations of the process (using information obtained from static global analysis and goal clustering), and performance results from an implementation of these ideas.
Resumo:
Abstract Idea Management Systems are web applications that implement the notion of open innovation though crowdsourcing. Typically, organizations use those kind of systems to connect to large communities in order to gather ideas for improvement of products or services. Originating from simple suggestion boxes, Idea Management Systems advanced beyond collecting ideas and aspire to be a knowledge management solution capable to select best ideas via collaborative as well as expert assessment methods. In practice, however, the contemporary systems still face a number of problems usually related to information overflow and recognizing questionable quality of submissions with reasonable time and effort allocation. This thesis focuses on idea assessment problem area and contributes a number of solutions that allow to filter, compare and evaluate ideas submitted into an Idea Management System. With respect to Idea Management System interoperability the thesis proposes theoretical model of Idea Life Cycle and formalizes it as the Gi2MO ontology which enables to go beyond the boundaries of a single system to compare and assess innovation in an organization wide or market wide context. Furthermore, based on the ontology, the thesis builds a number of solutions for improving idea assessment via: community opinion analysis (MARL), annotation of idea characteristics (Gi2MO Types) and study of idea relationships (Gi2MO Links). The main achievements of the thesis are: application of theoretical innovation models for practice of Idea Management to successfully recognize the differentiation between communities, opinion metrics and their recognition as a new tool for idea assessment, discovery of new relationship types between ideas and their impact on idea clustering. Finally, the thesis outcome is establishment of Gi2MO Project that serves as an incubator for Idea Management solutions and mature open-source software alternatives for the widely available commercial suites. From the academic point of view the project delivers resources to undertake experiments in the Idea Management Systems area and managed to become a forum that gathered a number of academic and industrial partners. Resumen Los Sistemas de Gestión de Ideas son aplicaciones Web que implementan el concepto de innovación abierta con técnicas de crowdsourcing. Típicamente, las organizaciones utilizan ese tipo de sistemas para conectar con comunidades grandes y así recoger ideas sobre cómo mejorar productos o servicios. Los Sistemas de Gestión de Ideas lian avanzado más allá de recoger simplemente ideas de buzones de sugerencias y ahora aspiran ser una solución de gestión de conocimiento capaz de seleccionar las mejores ideas por medio de técnicas colaborativas, así como métodos de evaluación llevados a cabo por expertos. Sin embargo, en la práctica, los sistemas contemporáneos todavía se enfrentan a una serie de problemas, que, por lo general, están relacionados con la sobrecarga de información y el reconocimiento de las ideas de dudosa calidad con la asignación de un tiempo y un esfuerzo razonables. Esta tesis se centra en el área de la evaluación de ideas y aporta una serie de soluciones que permiten filtrar, comparar y evaluar las ideas publicadas en un Sistema de Gestión de Ideas. Con respecto a la interoperabilidad de los Sistemas de Gestión de Ideas, la tesis propone un modelo teórico del Ciclo de Vida de la Idea y lo formaliza como la ontología Gi2MO que permite ir más allá de los límites de un sistema único para comparar y evaluar la innovación en un contexto amplio dentro de cualquier organización o mercado. Por otra parte, basado en la ontología, la tesis desarrolla una serie de soluciones para mejorar la evaluación de las ideas a través de: análisis de las opiniones de la comunidad (MARL), la anotación de las características de las ideas (Gi2MO Types) y el estudio de las relaciones de las ideas (Gi2MO Links). Los logros principales de la tesis son: la aplicación de los modelos teóricos de innovación para la práctica de Sistemas de Gestión de Ideas para reconocer las diferenciasentre comu¬nidades, métricas de opiniones de comunidad y su reconocimiento como una nueva herramienta para la evaluación de ideas, el descubrimiento de nuevos tipos de relaciones entre ideas y su impacto en la agrupación de estas. Por último, el resultado de tesis es el establecimiento de proyecto Gi2MO que sirve como incubadora de soluciones para Gestión de Ideas y herramientas de código abierto ya maduras como alternativas a otros sistemas comerciales. Desde el punto de vista académico, el proyecto ha provisto de recursos a ciertos experimentos en el área de Sistemas de Gestión de Ideas y logró convertirse en un foro que reunión para un número de socios tanto académicos como industriales.
Resumo:
Machine learning techniques are used for extracting valuable knowledge from data. Nowa¬days, these techniques are becoming even more important due to the evolution in data ac¬quisition and storage, which is leading to data with different characteristics that must be exploited. Therefore, advances in data collection must be accompanied with advances in machine learning techniques to solve new challenges that might arise, on both academic and real applications. There are several machine learning techniques depending on both data characteristics and purpose. Unsupervised classification or clustering is one of the most known techniques when data lack of supervision (unlabeled data) and the aim is to discover data groups (clusters) according to their similarity. On the other hand, supervised classification needs data with supervision (labeled data) and its aim is to make predictions about labels of new data. The presence of data labels is a very important characteristic that guides not only the learning task but also other related tasks such as validation. When only some of the available data are labeled whereas the others remain unlabeled (partially labeled data), neither clustering nor supervised classification can be used. This scenario, which is becoming common nowadays because of labeling process ignorance or cost, is tackled with semi-supervised learning techniques. This thesis focuses on the branch of semi-supervised learning closest to clustering, i.e., to discover clusters using available labels as support to guide and improve the clustering process. Another important data characteristic, different from the presence of data labels, is the relevance or not of data features. Data are characterized by features, but it is possible that not all of them are relevant, or equally relevant, for the learning process. A recent clustering tendency, related to data relevance and called subspace clustering, claims that different clusters might be described by different feature subsets. This differs from traditional solutions to data relevance problem, where a single feature subset (usually the complete set of original features) is found and used to perform the clustering process. The proximity of this work to clustering leads to the first goal of this thesis. As commented above, clustering validation is a difficult task due to the absence of data labels. Although there are many indices that can be used to assess the quality of clustering solutions, these validations depend on clustering algorithms and data characteristics. Hence, in the first goal three known clustering algorithms are used to cluster data with outliers and noise, to critically study how some of the most known validation indices behave. The main goal of this work is however to combine semi-supervised clustering with subspace clustering to obtain clustering solutions that can be correctly validated by using either known indices or expert opinions. Two different algorithms are proposed from different points of view to discover clusters characterized by different subspaces. For the first algorithm, available data labels are used for searching for subspaces firstly, before searching for clusters. This algorithm assigns each instance to only one cluster (hard clustering) and is based on mapping known labels to subspaces using supervised classification techniques. Subspaces are then used to find clusters using traditional clustering techniques. The second algorithm uses available data labels to search for subspaces and clusters at the same time in an iterative process. This algorithm assigns each instance to each cluster based on a membership probability (soft clustering) and is based on integrating known labels and the search for subspaces into a model-based clustering approach. The different proposals are tested using different real and synthetic databases, and comparisons to other methods are also included when appropriate. Finally, as an example of real and current application, different machine learning tech¬niques, including one of the proposals of this work (the most sophisticated one) are applied to a task of one of the most challenging biological problems nowadays, the human brain model¬ing. Specifically, expert neuroscientists do not agree with a neuron classification for the brain cortex, which makes impossible not only any modeling attempt but also the day-to-day work without a common way to name neurons. Therefore, machine learning techniques may help to get an accepted solution to this problem, which can be an important milestone for future research in neuroscience. Resumen Las técnicas de aprendizaje automático se usan para extraer información valiosa de datos. Hoy en día, la importancia de estas técnicas está siendo incluso mayor, debido a que la evolución en la adquisición y almacenamiento de datos está llevando a datos con diferentes características que deben ser explotadas. Por lo tanto, los avances en la recolección de datos deben ir ligados a avances en las técnicas de aprendizaje automático para resolver nuevos retos que pueden aparecer, tanto en aplicaciones académicas como reales. Existen varias técnicas de aprendizaje automático dependiendo de las características de los datos y del propósito. La clasificación no supervisada o clustering es una de las técnicas más conocidas cuando los datos carecen de supervisión (datos sin etiqueta), siendo el objetivo descubrir nuevos grupos (agrupaciones) dependiendo de la similitud de los datos. Por otra parte, la clasificación supervisada necesita datos con supervisión (datos etiquetados) y su objetivo es realizar predicciones sobre las etiquetas de nuevos datos. La presencia de las etiquetas es una característica muy importante que guía no solo el aprendizaje sino también otras tareas relacionadas como la validación. Cuando solo algunos de los datos disponibles están etiquetados, mientras que el resto permanece sin etiqueta (datos parcialmente etiquetados), ni el clustering ni la clasificación supervisada se pueden utilizar. Este escenario, que está llegando a ser común hoy en día debido a la ignorancia o el coste del proceso de etiquetado, es abordado utilizando técnicas de aprendizaje semi-supervisadas. Esta tesis trata la rama del aprendizaje semi-supervisado más cercana al clustering, es decir, descubrir agrupaciones utilizando las etiquetas disponibles como apoyo para guiar y mejorar el proceso de clustering. Otra característica importante de los datos, distinta de la presencia de etiquetas, es la relevancia o no de los atributos de los datos. Los datos se caracterizan por atributos, pero es posible que no todos ellos sean relevantes, o igualmente relevantes, para el proceso de aprendizaje. Una tendencia reciente en clustering, relacionada con la relevancia de los datos y llamada clustering en subespacios, afirma que agrupaciones diferentes pueden estar descritas por subconjuntos de atributos diferentes. Esto difiere de las soluciones tradicionales para el problema de la relevancia de los datos, en las que se busca un único subconjunto de atributos (normalmente el conjunto original de atributos) y se utiliza para realizar el proceso de clustering. La cercanía de este trabajo con el clustering lleva al primer objetivo de la tesis. Como se ha comentado previamente, la validación en clustering es una tarea difícil debido a la ausencia de etiquetas. Aunque existen muchos índices que pueden usarse para evaluar la calidad de las soluciones de clustering, estas validaciones dependen de los algoritmos de clustering utilizados y de las características de los datos. Por lo tanto, en el primer objetivo tres conocidos algoritmos se usan para agrupar datos con valores atípicos y ruido para estudiar de forma crítica cómo se comportan algunos de los índices de validación más conocidos. El objetivo principal de este trabajo sin embargo es combinar clustering semi-supervisado con clustering en subespacios para obtener soluciones de clustering que puedan ser validadas de forma correcta utilizando índices conocidos u opiniones expertas. Se proponen dos algoritmos desde dos puntos de vista diferentes para descubrir agrupaciones caracterizadas por diferentes subespacios. Para el primer algoritmo, las etiquetas disponibles se usan para bus¬car en primer lugar los subespacios antes de buscar las agrupaciones. Este algoritmo asigna cada instancia a un único cluster (hard clustering) y se basa en mapear las etiquetas cono-cidas a subespacios utilizando técnicas de clasificación supervisada. El segundo algoritmo utiliza las etiquetas disponibles para buscar de forma simultánea los subespacios y las agru¬paciones en un proceso iterativo. Este algoritmo asigna cada instancia a cada cluster con una probabilidad de pertenencia (soft clustering) y se basa en integrar las etiquetas conocidas y la búsqueda en subespacios dentro de clustering basado en modelos. Las propuestas son probadas utilizando diferentes bases de datos reales y sintéticas, incluyendo comparaciones con otros métodos cuando resulten apropiadas. Finalmente, a modo de ejemplo de una aplicación real y actual, se aplican diferentes técnicas de aprendizaje automático, incluyendo una de las propuestas de este trabajo (la más sofisticada) a una tarea de uno de los problemas biológicos más desafiantes hoy en día, el modelado del cerebro humano. Específicamente, expertos neurocientíficos no se ponen de acuerdo en una clasificación de neuronas para la corteza cerebral, lo que imposibilita no sólo cualquier intento de modelado sino también el trabajo del día a día al no tener una forma estándar de llamar a las neuronas. Por lo tanto, las técnicas de aprendizaje automático pueden ayudar a conseguir una solución aceptada para este problema, lo cual puede ser un importante hito para investigaciones futuras en neurociencia.
Resumo:
El sector ganadero está siendo gradualmente dominado por sistemas intensivos y especializados en los que los factores de producción están controlados y en los que los caracteres productivos son los criterios principales para la selección de especies y razas. Entretanto, muchos de los bienes y servicios que tradicionalmente suministraba el ganado, tales como los fertilizantes, la tracción animal o materias primas para la elaboración vestimenta y calzado están siendo reemplazados por productos industriales. Como consecuencia de ambos cambios, las razas seleccionadas intensivamente, las cuales están estrechamente ligadas a sistemas agrícolas de alta producción y altos insumos, han desplazado a muchas razas autóctonas, en las que la selección prácticamente ha cesado o es muy poco intensa. Actualmente existe una mayor conciencia social sobre la situación de las razas autóctonas y muchas funciones del ganado que previamente habían sido ignoradas están siendo reconocidas. Desde hace algunas décadas, se ha aceptado internacionalmente que las razas de ganado cumplen funciones económicas, socio-culturales, medioambientales y de seguridad alimentaria. Por ello, diferentes organismos internacionales han reconocido que la disminución de los recursos genéticos de animales domésticos (RGADs) es un problema grave y han recomendado su conservación. Aun así, la conservación de RGADs es un tema controvertido por la dificultad de valorar las funciones del ganado. Esta valoración es compleja debido que los RGADs tiene una doble naturaleza privada - pública. Como algunos economistas han subrayado, el ganado es un bien privado, sin embargo debido a algunas de sus funciones, también es un bien público. De esta forma, el aumento del conocimiento sobre valor de cada una de sus funciones facilitaría la toma de decisiones en relación a su conservación y desarrollo. Sin embargo, esta valoración es controvertida puesto que la importancia relativa de las funciones del ganado varía en función del momento, del lugar, de las especies y de las razas. El sector ganadero, debido a sus múltiples funciones, está influenciado por factores técnicos, medioambientales, sociales, culturales y políticos que están interrelacionados y que engloban a una enorme variedad de actores y procesos. Al igual que las funciones del ganado, los factores que afectan a su conservación y desarrollo están fuertemente condicionados por localización geográfica. Asimismo, estos factores pueden ser muy heterogéneos incluso dentro de una misma raza. Por otro lado, es razonable pensar que el ganadero es el actor principal de la conservación de razas locales. Actualmente, las razas locales están siendo Integration of socioeconomic and genetic aspects involved in the conservation of animal genetic resources 5 explotadas por ganaderos muy diversos bajo sistemas de producción también muy diferentes. Por todo ello, es de vital importancia comprender y evaluar el impacto que tienen las motivaciones, y el proceso de toma de decisiones de los ganaderos en la estructura genética de las razas. En esta tesis doctoral exploramos diferentes aspectos sociales, económicos y genéticos involucrados en la conservación de razas locales de ganado vacuno en Europa, como ejemplo de RGADs, esperando contribuir al entendimiento científico de este complejo tema. Nuestro objetivo es conseguir una visión global de los procesos subyacentes en la conservación y desarrollo de estas razas. Pretendemos ilustrar como se pueden utilizar métodos cuantitativos en el diseño y establecimiento de estrategias de conservación y desarrollo de RGADs objetivas y adecuadas. En primer lugar, exploramos el valor económico total (VET) del ganado analizando sus componentes públicos fuera de mercado usando como caso de estudio la raza vacuna Alistana-Sanabresa (AS). El VET de cualquier bien está formado por componentes de uso y de no-uso. Estos últimos incluyen el valor de opción, el valor de herencia y el valor de existencia. En el caso del ganado local, el valor de uso directo proviene de sus productos. Los valores de uso indirecto están relacionados con el papel que cumple las razas en el mantenimiento de los paisajes y cultura rural. El valor de opción se refiere a su futuro uso potencial y el valor de herencia al uso potencial de las generaciones venideras. Finalmente, el valor de existencia está relacionado con el bienestar que produce a la gente saber que existe un recurso específico. Nuestro objetivo fue determinar la importancia relativa que tienen los componentes fuera de mercado sobre el VET de la raza AS. Para ello evaluamos la voluntad de la gente a pagar por la conservación de la AS mediante experimentos de elección (EEs) a través de encuestas. Estos experimentos permiten valorar individualmente los distintos componentes del VET de cualquier bien. Los resultados los analizamos mediante de uso de modelos aleatorios logit. Encontramos que las funciones públicas de la raza AS tienen un valor significativo. Sus valores más importantes son el valor de uso indirecto como elemento cultural Zamorano y el valor de existencia (ambos representaron el 80% de VET). Además observamos que el valor que gente da a las funciones públicas de la razas de ganado dependen de sus características socioeconómicas. Los factores que condicionaron la voluntad a pagar para la conservación de la raza AS fueron el lugar de residencia (ciudad o pueblo), el haber visto animales de la raza o haber consumido sus productos y la actitud de los encuestados ante los conflictos entre el desarrollo económico y el medioambiente. Por otro lado, encontramos que no todo el mundo tiene una visión completa e integrada de todas las funciones públicas de la raza AS. Por este motivo, los programas o actividades de concienciación sobre su estado deberían hacer hincapié en este aspecto. La existencia de valores públicos de la raza AS implica que los ganaderos deberían recibir compensaciones económicas como pago por las funciones públicas que cumple su raza local. Las compensaciones asegurarían un tamaño de población que permitiría que la raza AS siga realizando estas funciones. Un mecanismo para ello podría ser el desarrollo del turismo rural relacionado con la raza. Esto aumentaría el valor de uso privado mientras que supondría un elemento añadido a las estrategias de conservación y desarrollo. No obstante, los ganaderos deben analizar cómo aprovechar los nichos de mercado existentes, así como mejorar la calidad de los productos de la raza prestando especial atención al etiquetado de los mismos. Una vez evaluada la importancia de las funciones públicas de las razas locales de ganado, analizamos la diversidad de factores técnicos, económicos y sociales de la producción de razas locales de ganado vacuno existente en Europa. Con este fin analizamos el caso de quince razas locales de ocho países en el contexto de un proyecto de colaboración internacional. Investigamos las diferencias entre los países para determinar los factores comunes clave que afectan a la viabilidad de las razas locales. Para ello entrevistamos mediante cuestionarios a un total de 355 ganaderos en las quince razas. Como indicador de viabilidad usamos los planes de los ganaderos de variación del tamaño de las ganaderías. Los cuestionarios incluían diferentes aspectos económicos, técnicos y sociales con potencial influencia en las dinámicas demográficas de las razas locales. Los datos recogidos los analizamos mediante distintas técnicas estadísticas multivariantes como el análisis discriminante y la regresión logística. Encontramos que los factores que afectan a la viabilidad de las razas locales en Europa son muy heterogéneos. Un resultado reseñable fue que los ganaderos de algunos países no consideran que la explotación de su raza tenga un alto valor social. Este hecho vuelve a poner de manifiesto la importancia de desarrollar programas Europeos de concienciación sobre la importancia de las funciones que cumplen las razas locales. Además los países analizados presentaron una alta variabilidad en cuanto a la importancia de los mercados locales en la distribución de los productos y en cuanto al porcentaje en propiedad del total de los pastos usados en las explotaciones. Este estudio reflejó la variabilidad de los sistemas y medios de producción (en el sentido socioeconómico, técnico y ecológico) que existe en Europa. Por ello hay que ser cautos en la implementación de las políticas comunes en los diferentes países. También encontramos que la variabilidad dentro de los países puede ser elevada debido a las diferencias entre razas, lo que implica que las políticas nacionales deber ser suficientemente flexibles para adaptarse a las peculiaridades de cada una de las razas. Por otro lado, encontramos una serie de factores comunes a la viabilidad de las razas en los distintos países; la edad de los ganaderos, la colaboración entre ellos y la apreciación social de las funciones culturales, medioambientales y sociales del ganado local. El envejecimiento de los ganaderos de razas locales no es solo un problema de falta de transferencia generacional, sino que también puede suponer una actitud más negativa hacia la inversión en las actividades ganaderas y en una menor capacidad de adaptación a los cambios del sector. La capacidad de adaptación de los ganaderos es un factor crucial en la viabilidad de las razas locales. Las estrategias y políticas de conservación comunes deben incluir las variables comunes a la viabilidad de las razas manteniendo flexibilidad suficiente para adaptarse a las especificidades nacionales. Estas estrategias y políticas deberían ir más allá de compensación económica a los ganaderos de razas locales por la menor productividad de sus razas. Las herramientas para la toma de decisiones ayudan a generar una visión amplia de la conservación y desarrollo de las razas locales. Estas herramientas abordan el diseño de estrategias de conservación y desarrollo de forma sistemática y estructurada. En la tercera parte de la tesis usamos una de estas herramientas, el análisis DAFO (Debilidades, Amenazas, Fortalezas y Oportunidades), con este propósito, reconociendo que la conservación de RGADs depende de los ganaderos. Desarrollamos un análisis DAFO cuantitativo y lo aplicamos a trece razas locales de ganado vacuno de seis países europeos en el contexto del proyecto de colaboración mencionado anteriormente. El método tiene cuatro pasos: 1) la definición del sistema; 2) la identificación y agrupación de los factores influyentes; 3) la cuantificación de la importancia de dichos factores y 4) la identificación y priorización de estrategias. Identificamos los factores utilizando multitud de agentes (multi-stakeholder appproach). Una vez determinados los factores se agruparon en una estructura de tres niveles. La importancia relativa de los cada uno de los factores para cada raza fue determinada por grupos de expertos en RGADs de los países integrados en el citado proyecto. Finalmente, desarrollamos un proceso de cuantificación para identificar y priorizar estrategias. La estructura de agrupación de factores permitió analizar el problema de la conservación desde el nivel general hasta el concreto. La unión de análisis específicos de cada una de las razas en un análisis DAFO común permitió evaluar la adecuación de las estrategias a cada caso concreto. Identificamos un total de 99 factores. El análisis reveló que mientras los factores menos importantes son muy consistentes entre razas, los factores y estrategias más relevantes son muy heterogéneos. La idoneidad de las estrategias fue mayor a medida que estas se hacían más generales. A pesar de dicha heterogeneidad, los factores influyentes y estrategias más importantes estaban ligados a aspectos positivos (fortalezas y oportunidades) lo que implica que el futuro de estas razas es prometedor. Los resultados de nuestro análisis también confirmaron la gran relevancia del valor cultural de estas razas. Las factores internos (fortalezas y debilidades) más importantes estaban relacionadas con los sistemas de producción y los ganaderos. Las oportunidades más relevantes estaban relacionadas con el desarrollo y marketing de nuevos productos mientras que las amenazas más importantes se encontraron a la hora de vender los productos actuales. Este resultado implica que sería fructífero trabajar en la motivación y colaboración entre ganaderos así como, en la mejora de sus capacidades. Concluimos que las políticas comunes europeas deberían centrarse en aspectos generales y ser los suficientemente flexibles para adaptarse a las singularidades de los países y las razas. Como ya se ha mencionado, los ganaderos juegan un papel esencial en la conservación y desarrollo de las razas autóctonas. Por ello es relevante entender que implicación puede tener la heterogeneidad de los mismos en la viabilidad de una raza. En la cuarta parte de la tesis hemos identificado tipos de ganaderos con el fin de entender cómo la relación entre la variabilidad de sus características socioeconómicas, los perfiles de las ganaderías y las dinámicas de las mismas. El análisis se ha realizado en un contexto sociológico, aplicando los conceptos de capital cultural y económico. Las tipologías se han determinado en función de factores socioeconómicos y culturales indicadores del capital cultural y capital económico de un individuo. Nuestro objetivo era estudiar si la tipología socioeconómica de los ganaderos afecta al perfil de su ganadería y a las decisiones que toman. Entrevistamos a 85 ganaderos de la raza Avileña-Negra Ibérica (ANI) y utilizamos los resultados de dichas entrevistas para ilustrar y testar el proceso. Definimos los tipos de ganaderos utilizando un análisis de clúster jerarquizado con un grupo de variables canónicas que se obtuvieron en función de cinco factores socioeconómicos: el nivel de educación del ganadero, el año en que empezó a ser ganadero de ANI, el porcentaje de los ingresos familiares que aporta la ganadería, el porcentaje de propiedad de la tierra de la explotación y la edad del ganadero. La tipología de los ganaderos de ANI resultó ser más compleja que en el pasado. Los resultados indicaron que los tipos de ganaderos variaban en muchos aspectos socioeconómicos y en los perfiles de sus Integration of socioeconomic and genetic aspects involved in the conservation of animal genetic resources 9 ganaderías. Los tipos de ganaderos determinados toman diferentes decisiones en relación a la modificación del tamaño de su ganadería y a sus objetivos de selección. Por otro lado, reaccionaron de forma diferente ante un hipotético escenario de reducción de las compensaciones económicas que les planteamos. En este estudio hemos visto que el capital cultural y el económico interactúan y hemos explicado como lo hacen en los distintos tipos de ganaderos. Por ejemplo, los ganaderos que poseían un mayor capital económico, capital cultural formal y capital cultural adquirido sobre la raza, eran los ganaderos cuyos animales tenían una mayor demanda por parte de otros ganaderos, lo cual podría responder a su mayor prestigio social dentro de la raza. Uno de los elementos claves para el futuro de la raza es si este prestigio responde a una superioridad genética de las animales. Esto ocurriría si los ganaderos utilizaran las herramientas que tienen a su disposición a la hora de seleccionar animales. Los tipos de ganaderos identificados mostraron también claras diferencias en sus formas de colaboración y en su reacción a una hipotética variación de las compensaciones económicas. Aunque algunos tipos de ganaderos mostraron un bajo nivel de dependencia a estas compensaciones, la mayoría se manifestaron altamente dependientes. Por ello cualquier cambio drástico en la política de ayudas puede comprometer el desarrollo de las razas autóctonas. La adaptación las políticas de compensaciones económicas a la heterogeneidad de los ganaderos podría aumentar la eficacia de las mismas por lo que sería interesante explorar posibilidades a este respecto. Concluimos destacando la necesidad de desarrollar políticas que tengan en cuenta la heterogeneidad de los ganaderos. Finalmente abordamos el estudio de la estructura genética de poblaciones ganaderas. Las decisiones de los ganaderos en relación a la selección de sementales y su número de descendientes configuran la estructura demográfica y genética de las razas. En la actualidad existe un interés renovado por estudiar las estructuras poblacionales debido a la influencia potencial de su estratificación sobre la predicción de valores genómicos y/o los análisis de asociación a genoma completo. Utilizamos dos métodos distintos, un algoritmo de clústeres basados en teoría de grafos (GCA) y un algoritmo de clustering bayesiano (STRUCTURE) para estudiar la estructura genética de la raza ANI. Prestamos especial atención al efecto de la presencia de parientes cercanos en la población y de la diferenciación genética entre subpoblaciones sobre el análisis de la estructura de la población. En primer lugar evaluamos el comportamiento de los dos algoritmos en poblaciones simuladas para posteriormente analizar los genotipos para 17 microsatélites de 13343 animales de 57 ganaderías distintas de raza ANI. La ANI es un ejemplo de raza con relaciones complejas. Por otro lado, utilizamos el archivo de pedigrí de la raza para estudiar el flujo de genes, calculando, entre otras cosas, la contribución de cada ganadería a la constitución genética de la raza. En el caso de las poblaciones simuladas, cuando el FST entre subpoblaciones fue suficientemente alto, ambos algoritmos, GCA y STRUCTURE, identificaron la misma estructura genética independientemente de que existieran o no relaciones familiares. Por el contrario, cuando el grado de diferenciación entre poblaciones fue bajo, el STRUCTURE identificó la estructura familiar mientras que GCA no permitió obtener ningún resultado concluyente. El GCA resultó ser un algoritmo más rápido y eficiente para de inferir la estructura genética en poblaciones con relaciones complejas. Este algoritmo también puede ser usado para reducir el número de clústeres a testar con el STRUTURE. En cuanto al análisis de la población de ANI, ambos algoritmos describieron la misma estructura, lo cual sugiere que los resultados son robustos. Se identificaron tres subpoblaciones diferenciadas que pudieran corresponderse con tres linajes distintos. Estos linajes estarían directamente relacionados con las ganaderías que han tenido una mayor contribución a la constitución genética de la raza. Por otro lado, hay un conjunto muy numeroso de individuos con una mezcla de orígenes. La información molecular describe una estructura estratificada de la población que se corresponde con la evolución demográfica de la raza. Es esencial analizar en mayor profundidad la composición de este último grupo de animales para determinar cómo afecta a la variabilidad genética de la población de ANI. SUMMARY Summary Livestock sector is gradually dominated by intensive and specialized systems where the production environment is controlled and the production traits are the main criteria for the selection of species and breeds. In the meantime, the traditional use of domestic animals for draught work, clothes and manure has been replaced by industrial products. As a consequence of both these changes, the intensively selected breeds closely linked with high-input highoutput production systems have displaced many native breeds where the selection has practically ceased or been very mild. People are now more aware of the state of endangerment among the native breeds and the previously ignored values of livestock are gaining recognition. For some decades now, the economic, socio-cultural, environmental and food security function of livestock breeds have been accepted worldwide and their loss has been recognized as a major problem. Therefore, the conservation of farm animal genetic resources (FAnGR) has been recommended. The conservation of FAnGR is controversial due to the complexity of the evaluation of its functions. This evaluation is difficult due to the nature of FAnGR both as private and public good. As some economists have highlighted, livestock animals are private goods, however, they are also public goods by their functions. Therefore, there is a need to increase the knowledge about the value of all livestock functions since to support the decision-making for the sustainable conservation and breeding of livestock. This is not straightforward since the relative importance of livestock functions depends on time, place, species and breed. Since livestock play a variety of roles, their production is driven by interrelated and everchanging economic, technical, environmental, social, cultural and political elements involving an enormous range of stakeholders. Not only FAnGR functions but also the importance of factors affecting the development and conservation of FAnGR can be very different across geographical areas. Furthermore, heterogeneity can be found even within breeds. Local breeds are nowadays raised by highly diverse farmers in equally diverse farms. It is quite reasonable to think that farmer is the major actor in the in situ conservation of livestock breeds. Thus, there is a need to understand the farmers’ motivations, decision making processes and the impact of their decisions on the genetic structure of breeds. In this PhD thesis we explore different social, economic and genetic aspects involved in the conservation of local cattle breeds, i.e. FAnGR, in Europe seeking to contribute to the scientific understanding of this complex issue. We aim to achieve a comprehensive view of the processes involved in the conservation and development of local cattle breeds and have made special efforts in discussing the implications of the research results in this respect. The final outcome of the thesis is to illustrate how quantitative methods can be exploited in designing and establishing sound strategies and programmes for the conservation and development of local livestock breeds. Firstly we explored the public non-market attributes of the total economic value (TEV) of livestock, using the Spanish Alistana-Sanabresa (AS) cattle breed as a case study. Total economic value of any good comprises both use and non-use components, where the latter include option, bequest and existence values. For livestock, the direct use values are mainly stemming from production outputs. Indirect use values relate to the role of livestock as a maintainer of rural culture and landscape. The option value is related to the potential use of livestock, the bequest values relate to the value associated with the inheritance of the resources to future generation and the existence values relate to the utility perceived by people from knowing that specific resources exist. We aimed to determine the relative importance of the non-market components of the TEV of the AS breed, the socio-economic variables that influence how people value the different components of TEV and to assess the implications of the Spanish national conservation strategy for the AS breed. To do so, we used a choice experiment (CE) approach and applied the technique to assess people’s willingness to pay (WTP) for the conservation of AS breed. The use of CE allows the valuation of the individual components of TEV for a given good. We analysed the choice data using a random parameter logit (RPL) model. AS breed was found to have a significant public good value. Its most important values were related to the indirect use value due to the maintenance of Zamorian culture and the existence value (both represent over 80% of its TEV). There were several socioeconomic variables influencing people’s valuation of the public service of the breed. In the case of AS breed, the place of living (city or rural area), having seen animals of the breed, having eaten breed products and the respondents’ attitude towards economic development – environment conflicts do influence people’s WTP for AS conservation. We also found that people do not have a complete picture of all the functions and roles that AS breed as AnGR. Therefore, the actions for increasing awareness of AS should go to that direction. The farmers will need incentives to exploit some of the public goods values and maintain the breed population size at socially desirable levels. One such mechanism could be related to the development of agritourism, which would enhance the private good value and provide an important addition to the conservation and utilisation strategy. However, the farmers need a serious evaluation on how to invest in niche product development or how to improve product quality and brand recognition. Using the understanding on the importance of the public function of local cattle we tried to depict the current diversity regarding technical, economic and social factors found in local cattle farming across Europe. To do so we focused in an international collaborative project on the case of fifteen local cattle breeds in eight European countries. We investigated the variation among the countries to detect the common key elements, which affect the viability of local breeds. We surveyed with interviews a total of 355 farms across the fifteen breeds. We used the planned herd size changes by the farmer as an indicator of breed viability. The questionnaire included several economic, technical and social aspects with potential influence on breeds’ demographic trends. We analysed the data using multivariate statistical techniques, such as discriminat analysis and logistic regression. The factors affecting a local breed’s viability were highly heterogeneous across Europe. In some countries, farmers did not recognise any high social value attached to keeping a local cattle breed. Hence there is a need to develop communication programmes across EU countries making people aware about the diversity and importance of values associated to raising local breeds. The countries were also very variable regarding the importance of local markets and the percentage of farm land owned by the farmers. Despite the country specificities, there were also common factors affecting the breed viability across Europe. The factors were from different grounds, from social, such as the age of the farmer and the social appreciation of their work, to technicalorganizational, such as the farmers’ attitude to collaborating with each other. The heterogeneity found reflects the variation in breeding systems and production environment (in the socioeconomic, technical and ecological sense) present in Europe. Therefore, caution should be taken in implementing common policies at the country level. Variability could also be rather high within countries due to breed specificities. Therefore, the national policies should be flexible to adapt to the specificities. The variables significantly associated with breed viability should be positively incorporated in the conservation strategies, and considered in developing common and/or national policies. The strategy preparation and policy planning should go beyond the provision of a general economic support to compensate farmers for the lower profitability of local breeds. Of particular interest is the observation that the opportunity for farmer collaboration and the appreciation by the society of the cultural, environmental and social role of local cattle farming were positively associated with the breed survival. In addition, farmer's high age is not only a problem of poor generation transfer but it is also a problem because it might lead to a lower attitude to investing in farming activities and to a lower ability to adapt to environment changes. The farmers’ adaptation capability may be a key point for the viability of local breeds. Decision making tools can help to get a comprehensive view on the conservation and development of local breeds. It allows us to use a systematic and structured approach for identifying and prioritizing conservation and development strategies. We used SWOT (Strengths, Weaknesses Opportunities and Threats) analysis for this purpose and recognized that many conservation and development projects rely on farmers. We developed a quantified SWOT method and applied it in the aforementioned collaborative research to a set of thirteen cattle breeds in six European countries. The method has four steps: definition of the system, identification and grouping of the driving factors, quantification of the importance of driving factors and identification and prioritization of the strategies. The factors were determined following a multi-stakeholder approach and grouped with a three level structure. FAnGR expert groups ranked the factors and a quantification process was implemented to identify and prioritize strategies. The structure of the SWOT analysis allowed analyzing the conservation problem from general down to specific perspectives. Joining breed specific analyses into a common SWOT analysis permitted comparison of breed cases across countries. We identified 99 driving factors across breeds. The across breed analysis revealed that irrelevant factors were consistent. There was high heterogeneity among the most relevant factors and strategies. The strategies increased eligibility as they lost specificity. Although the situation was very heterogeneous, the most promising factors and strategies were linked to the positive aspects (Strengths and Opportunities). Therefore, the future of the studied local breed is promising. The results of our analysis also confirmed the high relevance of the cultural value of the breeds. The most important internal factors (strengths and weaknesses) were related farmers and production systems. The most important opportunities were found in developing and marketing new products, while the most relevant threats were found in selling the current conventional products. In this regard, it should be fruitful to work on farmers’ motivation, collaboration, and capacity building. We conclude that European policies should focus on general aspects and be flexible enough to be adapted to the country and breed specificities. As mentioned, farmers have a key role in the conservation and development of a local cattle breed. Therefore, it is very relevant to understand the implications of farmer heterogeneity within a breed for its viability. In the fourth part of the thesis, we developed a general farmer typology to help analyzing the relations between farmer features and farm profiles, herd dynamics and farmers’ decision making. In the analysis we applied and used the sociological framework of economic and cultural capital and studied how the determined farmer types were linked to farm profiles and breeding decisions, among others. The typology was based on measurable socioeconomic factors indicating the economic and cultural capital of farmers. A group of 85 farmers raising the Spanish Avileña-Negra Ibérica (ANI) local cattle breed was used to illustrate and test the procedure. The farmer types were defined by a hierarchical cluster analysis with a set of canonical variables derived from the following five the socioeconomic factors: the formal educational level of the farmer, the year the farmer started keeping the ANI breed, the percentage of the total family income covered by the farm, the percentage of the total farm land owned by the farmer and the farmer’s age. The present ANI farmer types were much more complex than what they were in the past. We found that the farmer types differed in many socioeconomic aspects and in the farms profile. Furthermore, the types also differentiate farmers with respect to decisions about changing the farm size, breeding aims and stated reactions towards hypothetical subsidy variation. We have verified that economic and cultural capitals are not independent and further showed how they are interacting in the different farmer types. The farmers related to the types with high economic, institutionalized and embodied cultural capitals had a higher demand of breeding animals from others farmers of the breed, which may be related to the higher social prestige within the breed. One of the key implications of this finding for the future of the breed is whether or not the prestige of farmers is related to genetic superiority of their animals, what is to say, that it is related with a sound use of tools that farmers have available to make selection decisions. The farmer types differed in the form of collaboration and in the reactions to the hypothetical variation in subsidies. There were farmers with low dependency on subsidies, while most of them are highly dependent on subsidies. Therefore, any drastic change in the subsidy programme might have influence on the development of local breeds. The adaptation of these programme to the farmers’ heterogeneity might increase its efficacy, thus it would be interesting to explore ways of doing it. We conclude highlighting the need to have a variety of policies, which take into account the heterogeneity among the farmers. To finish we dealt with the genetic structure of livestock populations. Farmers’ decisions on the breeding animals and their progeny numbers shape the demographic and genetic structure of the breeds. Nowadays there is a renovated interest in studying the population structure since it can bias the prediction of genomic breeding values and genome wide association studies. We determined the genetic structure of ANI breed using two different methods, a graphical clustering algorithm (GCA) and a Bayesian clustering algorithm (STRUCTURE) were used. We paid particular attention to the influence that the presence of closely related individuals and the genetic differentiation of subpopulations may have on the inferences about the population structure. We first evaluated the performance of the algorithms in simulated populations. Then we inferred the genetic structure of the Spanish cattle breed ANI analysing a data set of 13343 animals (genotyped for 17 microsatellites) from 57 herds. ANI breed is an example of a population with complex relationships. We used the herdbook to study the gene flow, estimation among other things, the contribution of different herds to the genetic composition of the ANI breed. For the simulated scenarios, when FST among subpopulations was sufficiently high, both algorithms consistently inferred the correct structure regardless of the presence of related individuals. However, when the genetic differentiation among subpopulations was low, STRUCTURE identified the family based structure while GCA did not provide any consistent picture. The GCA was a fast and efficient method to infer genetic structure to determine the hidden core structure of a population with complex history and relationships. GCA could also be used to narrow down the number of clusters to be tested by STRUCTURE. Both, STRUCTURE and GCA describe a similar structure for the ANI breed suggesting that the results are robust. ANI population was found to have three genetically differentiated clusters that could correspond to three genetic lineages. These are directly related to the herds with a major contribution to the breed. In addition, ANI breed has also a large pool made of individuals with an admixture of origins. The genetic structure of ANI, assessed by molecular information, shows a stratification that corresponds to the demographic evolution of the breed. It will be of great importance to learn more about the composition of the pool and study how it is related to the existing genetic variability of the breed.
Resumo:
We present two approaches to cluster dialogue-based information obtained by the speech understanding module and the dialogue manager of a spoken dialogue system. The purpose is to estimate a language model related to each cluster, and use them to dynamically modify the model of the speech recognizer at each dialogue turn. In the first approach we build the cluster tree using local decisions based on a Maximum Normalized Mutual Information criterion. In the second one we take global decisions, based on the optimization of the global perplexity of the combination of the cluster-related LMs. Our experiments show a relative reduction of the word error rate of 15.17%, which helps to improve the performance of the understanding and the dialogue manager modules.
Resumo:
Probabilistic modeling is the de�ning characteristic of estimation of distribution algorithms (EDAs) which determines their behavior and performance in optimization. Regularization is a well-known statistical technique used for obtaining an improved model by reducing the generalization error of estimation, especially in high-dimensional problems. `1-regularization is a type of this technique with the appealing variable selection property which results in sparse model estimations. In this thesis, we study the use of regularization techniques for model learning in EDAs. Several methods for regularized model estimation in continuous domains based on a Gaussian distribution assumption are presented, and analyzed from di�erent aspects when used for optimization in a high-dimensional setting, where the population size of EDA has a logarithmic scale with respect to the number of variables. The optimization results obtained for a number of continuous problems with an increasing number of variables show that the proposed EDA based on regularized model estimation performs a more robust optimization, and is able to achieve signi�cantly better results for larger dimensions than other Gaussian-based EDAs. We also propose a method for learning a marginally factorized Gaussian Markov random �eld model using regularization techniques and a clustering algorithm. The experimental results show notable optimization performance on continuous additively decomposable problems when using this model estimation method. Our study also covers multi-objective optimization and we propose joint probabilistic modeling of variables and objectives in EDAs based on Bayesian networks, speci�cally models inspired from multi-dimensional Bayesian network classi�ers. It is shown that with this approach to modeling, two new types of relationships are encoded in the estimated models in addition to the variable relationships captured in other EDAs: objectivevariable and objective-objective relationships. An extensive experimental study shows the e�ectiveness of this approach for multi- and many-objective optimization. With the proposed joint variable-objective modeling, in addition to the Pareto set approximation, the algorithm is also able to obtain an estimation of the multi-objective problem structure. Finally, the study of multi-objective optimization based on joint probabilistic modeling is extended to noisy domains, where the noise in objective values is represented by intervals. A new version of the Pareto dominance relation for ordering the solutions in these problems, namely �-degree Pareto dominance, is introduced and its properties are analyzed. We show that the ranking methods based on this dominance relation can result in competitive performance of EDAs with respect to the quality of the approximated Pareto sets. This dominance relation is then used together with a method for joint probabilistic modeling based on `1-regularization for multi-objective feature subset selection in classi�cation, where six di�erent measures of accuracy are considered as objectives with interval values. The individual assessment of the proposed joint probabilistic modeling and solution ranking methods on datasets with small-medium dimensionality, when using two di�erent Bayesian classi�ers, shows that comparable or better Pareto sets of feature subsets are approximated in comparison to standard methods.
Resumo:
The area of Human-Machine Interface is growing fast due to its high importance in all technological systems. The basic idea behind designing human-machine interfaces is to enrich the communication with the technology in a natural and easy way. Gesture interfaces are a good example of transparent interfaces. Such interfaces must identify properly the action the user wants to perform, so the proper gesture recognition is of the highest importance. However, most of the systems based on gesture recognition use complex methods requiring high-resource devices. In this work, we propose to model gestures capturing their temporal properties, which significantly reduce storage requirements, and use clustering techniques, namely self-organizing maps and unsupervised genetic algorithm, for their classification. We further propose to train a certain number of algorithms with different parameters and combine their decision using majority voting in order to decrease the false positive rate. The main advantage of the approach is its simplicity, which enables the implementation using devices with limited resources, and therefore low cost. The testing results demonstrate its high potential.