12 resultados para Hemispheric specialization
em Universidad Politécnica de Madrid
Resumo:
Program specialization optimizes programs for known valúes of the input. It is often the case that the set of possible input valúes is unknown, or this set is infinite. However, a form of specialization can still be performed in such cases by means of abstract interpretation, specialization then being with respect to abstract valúes (substitutions), rather than concrete ones. We study the múltiple specialization of logic programs based on abstract interpretation. This involves in principie, and based on information from global analysis, generating several versions of a program predicate for different uses of such predicate, optimizing these versions, and, finally, producing a new, "multiply specialized" program. While múltiple specialization has received theoretical attention, little previous evidence exists on its practicality. In this paper we report on the incorporation of múltiple specialization in a parallelizing compiler and quantify its effects. A novel approach to the design and implementation of the specialization system is proposed. The resulting implementation techniques result in identical specializations to those of the best previously proposed techniques but require little or no modification of some existing abstract interpreters. Our results show that, using the proposed techniques, the resulting "abstract múltiple specialization" is indeed a relevant technique in practice. In particular, in the parallelizing compiler application, a good number of run-time tests are eliminated and invariants extracted automatically from loops, resulting generally in lower overheads and in several cases in increased speedups.
Resumo:
Polyvariant specialization allows generating múltiple versions of a procedure, which can then be separately optimized for different uses. Since allowing a high degree of polyvariance often results in more optimized code, polyvariant specializers, such as most partial evaluators, can genérate a large number of versions. This can produce unnecessarily large residual programs. Also, large programs can be slower due to cache miss effects. A possible solution to this problem is to introduce a minimization step which identifies sets of equivalent versions, and replace all occurrences of such versions by a single one. In this work we present a unifying view of the problem of superfluous polyvariance. It includes both partial deduction and abstract múltiple specialization. As regards partial deduction, we extend existing approaches in several ways. First, previous work has dealt with puré logic programs and a very limited class of builtins. Herein we propose an extensión to traditional characteristic trees which can be used in the presence of calis to external predicates. This includes all builtins, librarles, other user modules, etc. Second, we propose the possibility of collapsing versions which are not strictly equivalent. This allows trading time for space and can be useful in the context of embedded and pervasive systems. This is done by residualizing certain computations for external predicates which would otherwise be performed at specialization time. Third, we provide an experimental evaluation of the potential gains achievable using minimization which leads to interesting conclusions.
Resumo:
The relationship between abstract interpretation [2] and partial evaluation [5] has received considerable attention and (partial) integrations have been proposed starting from both the partial deduction (see e.g. [6] and its references) and abstract interpretation perspectives. Abstract interpretation-based analyzers (such as the CiaoPP analyzer [9,4]) generally compute a program analysis graph [1] in order to propagate (abstract) call and success information by performing fixpoint computations when needed. On the other hand, partial deduction methods [7] incorporate powerful techniques for on-line specialization including (concrete) call propagation and unfolding.
Resumo:
Program specialization optimizes programs for known valúes of the input. It is often the case that the set of possible input valúes is unknown, or this set is infinite. However, a form of specialization can still be performed in such cases by means of abstract interpretation, specialization then being with respect to abstract valúes (substitutions), rather than concrete ones. This paper reports on the application of abstract múltiple specialization to automatic program parallelization in the &-Prolog compiler. Abstract executability, the main concept underlying abstract specialization, is formalized, the design of the specialization system presented, and a non-trivial example of specialization in automatic parallelization is given.
Resumo:
We study the múltiple specialization of logic programs based on abstract interpretation. This involves in general generating several versions of a program predícate for different uses of such predícate, making use of information obtained from global analysis performed by an abstract interpreter, and finally producing a new, "multiply specialized" program. While the topic of múltiple specialization of logic programs has received considerable theoretical attention, it has never been actually incorporated in a compiler and its effects quantified. We perform such a study in the context of a parallelizing compiler and show that it is indeed a relevant technique in practice. Also, we propose an implementation technique which has the same power as the strongest of the previously proposed techniques but requires little or no modification of an existing abstract interpreter.
Resumo:
This paper presents a technique for achieving a class of optimizations related to the reduction of checks within cycles. The technique uses both Program Transformation and Abstract Interpretation. After a ñrst pass of an abstract interpreter which detects simple invariants, program transformation is used to build a hypothetical situation that simpliñes some predicates that should be executed within the cycle. This transformation implements the heuristic hypothesis that once conditional tests hold they may continué doing so recursively. Specialized versions of predicates are generated to detect and exploit those cases in which the invariance may hold. Abstract interpretation is then used again to verify the truth of such hypotheses and conñrm the proposed simpliñcation. This allows optimizations that go beyond those possible with only one pass of the abstract interpreter over the original program, as is normally the case. It also allows selective program specialization using a standard abstract interpreter not speciñcally designed for this purpose, thus simplifying the design of this already complex module of the compiler. In the paper, a class of programs amenable to such optimization is presented, along with some examples and an evaluation of the proposed techniques in some application áreas such as floundering detection and reducing run-time tests in automatic logic program parallelization. The analysis of the examples presented has been performed automatically by an implementation of the technique using existing abstract interpretation and program transformation tools.
Resumo:
The aim of program specialization is to optimize programs by exploiting certain knowledge about the context in which the program will execute. There exist many program manipulation techniques which allow specializing the program in different ways. Among them, one of the best known techniques is partial evaluation, often referred to simply as program specialization, which optimizes programs by specializing them for (partially) known input data. In this work we describe abstract specialization, a technique whose main features are: (1) specialization is performed with respect to "abstract" valúes rather than "concrete" ones, and (2) abstract interpretation rather than standard interpretation of the program is used in order to propágate information about execution states. The concept of abstract specialization is at the heart of the specialization system in CiaoPP, the Ciao system preprocessor. In this paper we present a unifying view of the different specialization techniques used in CiaoPP and discuss their potential applications by means of examples. The applications discussed include program parallelization, optimization of dynamic scheduling (concurreney), and integration of partial evaluation techniques.
Resumo:
The relationship between abstract interpretation and partial deduction has received considerable attention and (partial) integrations have been proposed starting from both the partial deduction and abstract interpretation perspectives. In this work we present what we argüe is the first fully described generic algorithm for efñcient and precise integration of abstract interpretation and partial deduction. Taking as starting point state-of-the-art algorithms for context-sensitive, polyvariant abstract interpretation and (abstract) partial deduction, we present an algorithm which combines the best of both worlds. Key ingredients include the accurate success propagation inherent to abstract interpretation and the powerful program transformations achievable by partial deduction. In our algorithm, the calis which appear in the analysis graph are not analyzed w.r.t. the original definition of the procedure but w.r.t. specialized definitions of these procedures. Such specialized definitions are obtained by applying both unfolding and abstract executability. Our framework is parametric w.r.t. different control strategies and abstract domains. Different combinations of such parameters correspond to existing algorithms for program analysis and specialization. Simultaneously, our approach opens the door to the efñcient computation of strictly more precise results than those achievable by each of the individual techniques. The algorithm is now one of the key components of the CiaoPP analysis and specialization system.
Resumo:
Separating programs into modules is a well-known technique which has proven very useful in program development and maintenance. Starting by introducing a number of possible scenarios, in this paper we study different issues which appear when developing analysis and specialization techniques for modular logic programming. We discuss a number of design alternatives and their consequences for the different scenarios considered and describe where applicable the decisions made in the Ciao system analyzer and specializer. In our discussion we use the module system of Ciao Prolog. This is both for concreteness and because Ciao Prolog is a second-generation Prolog system which has been designed with global analysis and specialization in mind, and which has a strict module system. The aim of this work is not to provide a theoretical basis on modular analysis and specialization, but rather to discuss some interesting practical issues.
Resumo:
Abstract is not available
Resumo:
In this report we discuss some of the issues involved in the specialization and optimization of constraint logic programs with dynamic scheduling. Dynamic scheduling, as any other form of concurrency, increases the expressive power of constraint logic programs, but also introduces run-time overhead. The objective of the specialization and optimization is to reduce as much as possible such overhead automatically, while preserving the semantics of the original programs. This is done by program transformation based on global analysis. We present implementation techniques for this purpose and report on experimental results obtained from an implementation of the techniques in the context of the CIAO compiler.
Resumo:
Differential resultant formulas are defined, for a system $\cP$ of $n$ ordinary Laurent differential polynomials in $n-1$ differential variables. These are determinants of coefficient matrices of an extended system of polynomials obtained from $\cP$ through derivations and multiplications by Laurent monomials. To start, through derivations, a system $\ps(\cP)$ of $L$ polynomials in $L-1$ algebraic variables is obtained, which is non sparse in the order of derivation. This enables the use of existing formulas for the computation of algebraic resultants, of the multivariate sparse algebraic polynomials in $\ps(\cP)$, to obtain polynomials in the differential elimination ideal generated by $\cP$. The formulas obtained are multiples of the sparse differential resultant defined by Li, Yuan and Gao, and provide order and degree bounds in terms of mixed volumes in the generic case.