4 resultados para Helicobacter pylori genotypes

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nickel, like other transition metals, can be toxic to cells even at moderate concentration (low microM range) by displacing essential metals from their native binding sites or by generating reactive oxygen species that cause oxidative DNA damage. For this reason, cells have evolved mechanisms to deal with excess nickel. Efflux systems include members of the Resistance-Nodulation-cell Division (RND) protein family, P-type ATPases, cation diffusion facilitators (CDF) and other resistance factors. Nickel-specific exporters have been characterized in Cupravidus metallidurans, Helicobacter pylori, Achromobacter xylosoxidans, Serratia marcenses and Escherichia coli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizobium leguminosarum bv. viciae establishes root nodule symbioses with several legume genera. Although most isolates are equally effective in establishing symbioses with all host genera, previous evidence suggests that hosts select specific rhizobial genotypes among those present in the soil. We have used population genomics to further investigate this observation. P. sativum, L. culinaris, V. sativa, and V. faba plants were used to trap rhizobia from a well-characterized soil, and pooled genomic DNAs from one-hundred isolates from each plant were sequenced. Sequence reads were aligned to the R. leguminosarum bv. viciae 3841 reference genome. High overall conservation of sequences was observed in all subpopulations, although several multigenic regions were absent from the soil population. A large fraction (16-22%) of sequence reads could not be recruited to the reference genome, suggesting that they represent sequences specific to that particular soil population. Although highly conserved, the 16S-23S rRNA gene region presented single nucleotide polymorphisms (SNPs) regarding the reference genome, but no striking differences could be found among plant-selected subpopulations. Plant-specific SNP patterns were, however, clearly observed within the nod gene cluster, supporting the existence of a plant preference for specific rhizobial genotypes. This was also shown after genome-wide analysis of SNP patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizobium leguminosarum establishes highly specific nitrogen-fixing symbioses. We have applied a Pool-Seq approach to study plant host selection of genotypes. Our results confirm, at the genomic level, previous observations regarding plant selection of specific genotypes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal imaging has been used to evaluate the response to drought and warm temperatures in a collection of Brachypodium distachyon lines adapted to varied environmental conditions. Thermographic records were able to separate lines from contrasting rainfall regimes. Genotypes from dryer environments showed warmer leaves under water deficit, which suggested that decreased evapotranspiration was related to a more intense stomatal closure. When irrigated and under high temperature conditions, drought-adapted lines showed cooler leaves than lines from wetter zones. The consistent, inverse thermographic response of lines to water stress and heat validates the reliability of this method to assess drought tolerance in this model cereal. It additionally supports the hypothesis that stomatal-based mechanisms are involved in natural variation for drought tolerance in Brachypodium. The study further suggests that these mechanisms are not constitutive but likely related to a more efficient closing response to avoid dehydration in adapted genotypes. Higher leaf temperature under water deficit seems a dependable criterion of drought tolerance, not only in B. distachyon but also in the main cereal crops and related grasses where thermography can facilitate high-throughput preliminary screening of tolerant materials.