15 resultados para Heated cavity
em Universidad Politécnica de Madrid
Resumo:
Linear three-dimensional modal instability of steady laminar two-dimensional states developing in a lid-driven cavity of isosceles triangular cross-section is investigated theoretically and experimentally for the case in which the equal sides form a rectangular corner. An asymmetric steady two-dimensional motion is driven by the steady motion of one of the equal sides. If the side moves away from the rectangular corner, a stationary three-dimensional instability is found. If the motion is directed towards the corner, the instability is oscillatory. The respective critical Reynolds numbers are identified both theoretically and experimentally. The neutral curves pertinent to the two configurations and the properties of the respective leading eigenmodes are documented and analogies to instabilities in rectangular lid-driven cavities are discussed.
Resumo:
The stability analysis of open cavity flows is a problem of great interest in the aeronautical industry. This type of flow can appear, for example, in landing gears or auxiliary power unit configurations. Open cavity flows is very sensitive to any change in the configuration, either physical (incoming boundary layer, Reynolds or Mach numbers) or geometrical (length to depth and length to width ratio). In this work, we have focused on the effect of geometry and of the Reynolds number on the stability properties of a threedimensional spanwise periodic cavity flow in the incompressible limit. To that end, BiGlobal analysis is used to investigate the instabilities in this configuration. The basic flow is obtained by the numerical integration of the Navier-Stokes equations with laminar boundary layers imposed upstream. The 3D perturbation, assumed to be periodic in the spanwise direction, is obtained as the solution of the global eigenvalue problem. A parametric study has been performed, analyzing the stability of the flow under variation of the Reynolds number, the L/D ratio of the cavity, and the spanwise wavenumber β. For consistency, multidomain high order numerical schemes have been used in all the computations, either basic flow or eigenvalue problems. The results allow to define the neutral curves in the range of L/D = 1 to L/D = 3. A scaling relating the frequency of the eigenmodes and the length to depth ratio is provided, based on the analysis results.
Resumo:
This contribution presents results of an incompressible two-dimensional flow over an open cavity of fixed aspect ratio (length/depth) L/D = 2 and the coupling between the three dimensional low frequency oscillation mode confined in the cavity and the wave-like disturbances evolving on the downstream wall of the cavity in the form of Tollmien-Schlichting waves. BiGlobal instability analysis is conducted to search the global disturbances superimposed upon a two-dimensional steady basic flow. The base solution is computed by the integration of the laminar Navier-Stokes equations in primitive variable formulation, while the eigenvalue problem (EVP) derived from the discretization of the linearized equations of motion in the BiGlobal framework is solved using an iterative procedure. The formulation of the BiGlobal EVP for the unbounded flow in the open cavity problem introduces additional difficulties regarding the flow-through boundaries. Local analysis has been utilized for the determination of the proper boundary conditions in the upper limit of the downstream region
Resumo:
The characteristics of optical bistability in a vertical- cavity semiconductor optical amplifier (VCSOA) operated in reflection are reported. The dependences of the optical bistability in VCSOAs on the initial phase detuning and on the applied bias current are analyzed. The optical bistability is also studied for different numbers of superimposed periods in the top distributed bragg reflector (DBR) that conform the internal cavity of the device. The appearance of the X-bistable and the clockwise bistable loops is predicted theoretically in a VCSOA operated in reflection for the first time, to the best of our knowledge. Moreover, it is also predicted that the control of the VCSOA’s top reflectivity by the addition of new superimposed periods in its top DBR reduces by one order of magnitude the input power needed for the assessment of the X- and the clockwise bistable loop, compared to that required in in-plane semiconductor optical amplifiers. These results, added to the ease of fabricating two-dimensional arrays of this kind of device could be useful for the development of new optical logic or optical signal regeneration devices.
Resumo:
The stability of a liquid layer with an undeformable interface open to the atmo- sphere, subjected to a horizontal temperature gradient, is theoretically analysed. Buoyancy and surface tension forces give rise to a basic flow for any temperature dif- ference applied on the system. Depending on the liquid depth, this basic flow is desta- bilised either by an oscillatory instability, giving rise to the so-called hydrothermal waves, or by a stationary instability leading to corotating rolls. Oscillatory perturba- tions are driven by the basic flow and therefore one must distinguish between convec- tive and absolute thresholds. The instability mechanisms as well as the di¿erent re- gimes observed in experiments are discussed. The calculations are performed for a fluid used in recent experiments, namely silicone oil of 0.65 cSt ðPr 1?4 10Þ. In partic- ular, it is shown that two branches of absolute instability exist, which may be related to the two types of hydrothermal waves observed experimentally
Resumo:
This work is devoted to the theoretical study of the stability of two superposed horizontal liquid layers bounded by two solid planes and subjected to a horizontal temperature gradient. The liquids are supposed to be immiscible with a nondeformable interface. The forces acting on the system are buoyancy and interfacial tension. Four different flow patterns and temperature profiles are found for the basic state. A linear perturbative analysis with respect to two- and three-dimensional perturbations reveals the existence of three kinds of patterns. Depending on the relative height of both liquids several situations are predicted: either wave propa- gation from cold to the hot regions, or waves propagating in the opposite direction or still stationary longitu- dinal rolls. The behavior of three different pairs of liquids which have been used in experiments on bilayers under vertical gradient by other authors have been examined. The instability mechanisms are discussed and a qualitative interpretation of the different behaviors exhibited by the system is provided. In some configurations it is possible to find a codimension-two point created by the interaction of two Hopf modes with different frequencies and wave numbers. These results suggest to consider two liquid layers as an interesting prototype ? nard-Marangoni problem.
Resumo:
Semiconductor Optical Amplifiers (SOAs) have mainly found application in optical telecommunication networks for optical signal regeneration, wavelength switching or wavelength conversion. The objective of this paper is to report the use of semiconductor optical amplifiers for optical sensing taking into account their optical bistable properties. As it was previously reported, some semiconductor optical amplifiers, including Fabry-Perot and Distributed-Feedback Semiconductor Optical Amplifiers (FPSOAs and DFBSOAs), may exhibit optical bistability. The characteristics of the attained optical bistability in this kind of devices are strongly dependent on different parameters including wavelength, temperature or applied bias current and small variations lead to a change on their bistable properties. As in previous analyses for Fabry-Perot and DFB SOAs, the variations of these parameters and their possible application for optical sensing are reported in this paper for the case of the Vertical-Cavity Semiconductor Optical Amplifier (VCSOA). When using a VCSOA, the input power needed for the appearance of optical bistability is one order of magnitude lower than that needed in edge-emitting devices. This feature, added to the low manufacturing costs of VCSOAs and the ease to integrate them in 2-D arrays, makes the VCSOA a very promising device for its potential use in optical sensing applications.
Resumo:
The study of the Vertical-Cavity Semiconductor Optical Amplifiers (VCSOAs) for optical signal processing applications is increasing his interest. Due to their particular structure, the VCSOAs present some advantages when compared to their edge-emitting counterparts including low manufacturing costs, high coupling efficiency to optical fibers and the ease to fabricate 2-D arrays of this kind of devices. As a consequence, all-optical logic gates based on VCSOAs may be very promising devices for their use in optical computing and optical switching in communications. Moreover, since all the boolean logic functions can be implemented by combining NAND logic gates, the development of a Vertical-Cavity NAND gate would be of particular interest. In this paper, the characteristics of the dispersive optical bistability appearing on a VCSOA operated in reflection are studied. A progressive increment of the number of layers compounding the top Distributed Bragg Reflector (DBR) of the VCSOA results on a change on the shape of the appearing bistability from an S-shape to a clockwise bistable loop. This resulting clockwise bistability has high on-off contrast ratio and input power requirements one order of magnitude lower than those needed for edge-emitting devices. Based on these results, an all-optical vertical-cavity NAND gate with high on-off contrast ratio and an input power for operation of only 10|i\V will be reported in this paper.
Resumo:
A theoretical study of linear global instability of incompressible flow over a rectangular spanwise-periodic open cavity in an unconfined domain is presented. Comparisons with the limited number of results available in the literature are shown. Subsequently, the parameter space is scanned in a systematic manner, varying Reynolds number, incoming boundary-layer thickness and length-to-depth aspect ratio. This permits documenting the neutral curves and leading eigenmode characteristics of this flow. Correlations constructed using the results obtained collapse all available theoretical data on the three-dimensional instabilities.
Resumo:
Existe una creciente necesidad de hacer el mejor uso del agua para regadío. Una alternativa eficiente consiste en la monitorización del contenido volumétrico de agua (θ), utilizando sensores de humedad. A pesar de existir una gran diversidad de sensores y tecnologías disponibles, actualmente ninguna de ellas permite obtener medidas distribuidas en perfiles verticales de un metro y en escalas laterales de 0.1-1,000 m. En este sentido, es necesario buscar tecnologías alternativas que sirvan de puente entre las medidas puntuales y las escalas intermedias. Esta tesis doctoral se basa en el uso de Fibra Óptica (FO) con sistema de medida de temperatura distribuida (DTS), una tecnología alternativa de reciente creación que ha levantado gran expectación en las últimas dos décadas. Específicamente utilizamos el método de fibra calentada, en inglés Actively Heated Fiber Optic (AHFO), en la cual los cables de Fibra Óptica se utilizan como sondas de calor mediante la aplicación de corriente eléctrica a través de la camisa de acero inoxidable, o de un conductor eléctrico simétricamente posicionado, envuelto, alrededor del haz de fibra óptica. El uso de fibra calentada se basa en la utilización de la teoría de los pulsos de calor, en inglés Heated Pulsed Theory (HPP), por la cual el conductor se aproxima a una fuente de calor lineal e infinitesimal que introduce calor en el suelo. Mediante el análisis del tiempo de ocurrencia y magnitud de la respuesta térmica ante un pulso de calor, es posible estimar algunas propiedades específicas del suelo, tales como el contenido de humedad, calor específico (C) y conductividad térmica. Estos parámetros pueden ser estimados utilizando un sensor de temperatura adyacente a la sonda de calor [método simple, en inglés single heated pulsed probes (SHPP)], ó a una distancia radial r [método doble, en inglés dual heated pulsed probes (DHPP)]. Esta tesis doctoral pretende probar la idoneidad de los sistemas de fibra óptica calentada para la aplicación de la teoría clásica de sondas calentadas. Para ello, se desarrollarán dos sistemas FO-DTS. El primero se sitúa en un campo agrícola de La Nava de Arévalo (Ávila, España), en el cual se aplica la teoría SHPP para estimar θ. El segundo sistema se desarrolla en laboratorio y emplea la teoría DHPP para medir tanto θ como C. La teoría SHPP puede ser implementada con fibra óptica calentada para obtener medidas distribuidas de θ, mediante la utilización de sistemas FO-DTS y el uso de curvas de calibración específicas para cada suelo. Sin embargo, la mayoría de aplicaciones AHFO se han desarrollado exclusivamente en laboratorio utilizando medios porosos homogéneos. En esta tesis se utiliza el programa Hydrus 2D/3D para definir tales curvas de calibración. El modelo propuesto es validado en un segmento de cable enterrado en una instalación de fibra óptica y es capaz de predecir la respuesta térmica del suelo en puntos concretos de la instalación una vez que las propiedades físicas y térmicas de éste son definidas. La exactitud de la metodología para predecir θ frente a medidas puntuales tomadas con sensores de humedad comerciales fue de 0.001 a 0.022 m3 m-3 La implementación de la teoría DHPP con AHFO para medir C y θ suponen una oportunidad sin precedentes para aplicaciones medioambientales. En esta tesis se emplean diferentes combinaciones de cables y fuentes emisoras de calor, que se colocan en paralelo y utilizan un rango variado de espaciamientos, todo ello en el laboratorio. La amplitud de la señal y el tiempo de llegada se han observado como funciones del calor específico del suelo. Medidas de C, utilizando esta metodología y ante un rango variado de contenidos de humedad, sugirieron la idoneidad del método, aunque también se observaron importantes errores en contenidos bajos de humedad de hasta un 22%. La mejora del método requerirá otros modelos más precisos que tengan en cuenta el diámetro del cable, así como la posible influencia térmica del mismo. ABSTRACT There is an increasing need to make the most efficient use of water for irrigation. A good approach to make irrigation as efficient as possible is to monitor soil water content (θ) using soil moisture sensors. Although, there is a broad range of different sensors and technologies, currently, none of them can practically and accurately provide vertical and lateral moisture profiles spanning 0-1 m depth and 0.1-1,000 m lateral scales. In this regard, further research to fulfill the intermediate scale and to bridge single-point measurement with the broaden scales is still needed. This dissertation is based on the use of Fiber Optics with Distributed Temperature Sensing (FO-DTS), a novel approach which has been receiving growing interest in the last two decades. Specifically, we employ the so called Actively Heated Fiber Optic (AHFO) method, in which FO cables are employed as heat probe conductors by applying electricity to the stainless steel armoring jacket or an added conductor symmetrically positioned (wrapped) about the FO cable. AHFO is based on the classic Heated Pulsed Theory (HPP) which usually employs a heat probe conductor that approximates to an infinite line heat source which injects heat into the soil. Observation of the timing and magnitude of the thermal response to the energy input provide enough information to derive certain specific soil thermal characteristics such as the soil heat capacity, soil thermal conductivity or soil water content. These parameters can be estimated by capturing the soil thermal response (using a thermal sensor) adjacent to the heat source (the heating and the thermal sources are mounted together in the so called single heated pulsed probe (SHPP)), or separated at a certain distance, r (dual heated pulsed method (DHPP) This dissertation aims to test the feasibility of heated fiber optics to implement the HPP theory. Specifically, we focus on measuring soil water content (θ) and soil heat capacity (C) by employing two types of FO-DTS systems. The first one is located in an agricultural field in La Nava de Arévalo (Ávila, Spain) and employ the SHPP theory to estimate θ. The second one is developed in the laboratory using the procedures described in the DHPP theory, and focuses on estimating both C and θ. The SHPP theory can be implemented with actively heated fiber optics (AHFO) to obtain distributed measurements of soil water content (θ) by using reported soil thermal responses in Distributed Temperature Sensing (DTS) and with a soil-specific calibration relationship. However, most reported AHFO applications have been calibrated under laboratory homogeneous soil conditions, while inexpensive efficient calibration procedures useful in heterogeneous soils are lacking. In this PhD thesis, we employ the Hydrus 2D/3D code to define these soil-specific calibration curves. The model is then validated at a selected FO transect of the DTS installation. The model was able to predict the soil thermal response at specific locations of the fiber optic cable once the surrounding soil hydraulic and thermal properties were known. Results using electromagnetic moisture sensors at the same specific locations demonstrate the feasibility of the model to detect θ within an accuracy of 0.001 to 0.022 m3 m-3. Implementation of the Dual Heated Pulsed Probe (DPHP) theory for measurement of volumetric heat capacity (C) and water content (θ) with Distributed Temperature Sensing (DTS) heated fiber optic (FO) systems presents an unprecedented opportunity for environmental monitoring. We test the method using different combinations of FO cables and heat sources at a range of spacings in a laboratory setting. The amplitude and phase-shift in the heat signal with distance was found to be a function of the soil volumetric heat capacity (referred, here, to as Cs). Estimations of Cs at a range of θ suggest feasibility via responsiveness to the changes in θ (we observed a linear relationship in all FO combinations), though observed bias with decreasing soil water contents (up to 22%) was also reported. Optimization will require further models to account for the finite radius and thermal influence of the FO cables, employed here as “needle probes”. Also, consideration of the range of soil conditions and cable spacing and jacket configurations, suggested here to be valuable subjects of further study and development.
Resumo:
El problema del flujo sobre una cavidad abierta ha sido estudiado en profundidad en la literatura, tanto por el interés académico del problema como por sus aplicaciones prácticas en gran variedad de problemas ingenieriles, como puede ser el alojamiento del tren de aterrizaje de aeronaves, o el depósito de agua de aviones contraincendios. Desde hace muchos a˜nos se estudian los distintos tipos de inestabilidades asociadas a este problema: los modos bidimensionales en la capa de cortadura, y los modos tridimensionales en el torbellino de recirculación principal dentro de la cavidad. En esta tesis se presenta un estudio paramétrico completo del límite incompresible del problema, empleando la herramienta de estabilidad lineal conocida como BiGlobal. Esta aproximación permite contemplar la estabilidad global del flujo, y obtener tanto la forma como las características de los modos propios del problema físico, sean estables o inestables. El estudio realizado permite caracterizar con gran detalle todos los modos relevantes, así como la envolvente de estabilidad en el espacio paramétrico del problema incompresible (Mach nulo, variación de Reynolds, espesor de capa límite incidente, relación altura/profundidad de la cavidad, y longitud característica de la perturbación en la dirección transversal). A la luz de los resultados obtenidos se proponen una serie de relaciones entre los parámetros y características de los modos principales, como por ejemplo entre el Reynolds crítico de un modo, y la longitud característica del mismo. Los resultados numéricos se contrastan con una campaña experimental, siendo la principal conclusión de dicha comparación que los modos lineales están presentes en el flujo real saturado, pero que existen diferencias notables en frecuencia entre las predicciones teóricas y los experimentos. Para intentar determinar la naturaleza de dichas diferencias se realiza una simulación numérica directa tridimensional, y se utiliza un algoritmo de DMD (descomposición dinámica de modos) para describir el proceso de saturación. ABSTRACT The problem of the flow over an open cavity has been studied in depth in the literature, both for being an interesting academical problem and due to the multitude of industrial applications, like the landing gear of aircraft, or the water deposit of firefighter airplanes. The different types of instabilities appearing in this flow studied in the literature are two: the two-dimensional shear layer modes, and the three-dimensional modes that appear in the main recirculating vortex inside the cavity. In this thesis a parametric study in the incompressible limit of the problem is presented, using the linear stability analysis known as BiGlobal. This approximation allows to obtain the global stability behaviour of the flow, and to capture both the morphological features and the characteristics of the eigenmodes of the physical problem, whether they are stable or unstable. The study presented here characterizes with great detail all the relevant eigenmodes, as well as the hypersurface of instability on the parameter space of the incompressible problem (Mach equal to zero, and variation of the Reynolds number, the incoming boundary layer thickness, the length to depth aspect ratio of the cavity and the spanwise length of the perturbation). The results allow to construct parametric relations between the characteristics of the leading eigenmodes and the parameters of the problem, like for example the one existing between the critical Reynolds number and its characteristic length. The numerical results presented here are compared with those of an experimental campaign, with the main conclusion of said comparison being that the linear eigenmode are present in the real saturated flow, albeit with some significant differences in the frequencies of the experiments and those predicted by the theory. To try to determine the nature of those differences a three-dimensional direct numerical simulation, analyzed with Dynamic Mode Decomposition algorithm, was used to describe the process of saturation.
Resumo:
The first feasibility study of using dual-probe heated fiber optics with distributed temperature sensing to measure soil volumetric heat capacity and soil water content is presented. Although results using different combinations of cables demonstrate feasibility, further work is needed to gain accuracy, including a model to account for the finite dimension and the thermal influence of the probes. Implementation of the dual-probe heat-pulse (DPHP) approach for measurement of volumetric heat capacity (C) and water content (θ) with distributed temperature sensing heated fiber optic (FO) systems presents an unprecedented opportunity for environmental monitoring (e.g., simultaneous measurement at thousands of points). We applied uniform heat pulses along a FO cable and monitored the thermal response at adjacent cables. We tested the DPHP method in the laboratory using multiple FO cables at a range of spacings. The amplitude and phase shift in the heat signal with distance was found to be a function of the soil volumetric heat capacity. Estimations of C at a range of moisture contents (θ = 0.09– 0.34 m3 m−3) suggest the feasibility of measurement via responsiveness to the changes in θ, although we observed error with decreasing soil water contents (up to 26% at θ = 0.09 m3 m−3). Optimization will require further models to account for the finite radius and thermal influence of the FO cables. Although the results indicate that the method shows great promise, further study is needed to quantify the effects of soil type, cable spacing, and jacket configurations on accuracy.
Resumo:
The Actively Heated Fiber Optic (AHFO) method is shown to be capable of measuring soil water content several times per hour at 0.25 m spacing along cables of multiple kilometers in length. AHFO is based on distributed temperature sensing (DTS) observation of the heating and cooling of a buried fiber-optic cable resulting from an electrical impulse of energy delivered from the steel cable jacket. The results presented were collected from 750 m of cable buried in three 240 m colocated transects at 30, 60, and 90 cm depths in an agricultural field under center pivot irrigation. The calibration curve relating soil water content to the thermal response of the soil to a heat pulse of 10 W m−1 for 1 min duration was developed in the lab. This calibration was found applicable to the 30 and 60 cm depth cables, while the 90 cm depth cable illustrated the challenges presented by soil heterogeneity for this technique. This method was used to map with high resolution the variability of soil water content and fluxes induced by the nonuniformity of water application at the surface.
Resumo:
Direct numerical simulations are performed to analyze the three-dimensional instability of flows over three-dimensional cavities. The flow structures at different Reynolds numbers are investigated by using the spectral-element solver nek5000. As the Reynolds number increasing, the lateral wall effects become more important, the recirculation zone shrinks, the front vortex increases and the flow structure inside of the cavity becomes more complex. Results show that the flow bifurcates from a steady state to an oscillatory regime beyond a value of Reynolds number Re = 1100.
Resumo:
The three-dimensional wall-bounded open cavity may be considered as a simplified geometry found in industrial applications such as leading gear or slotted flats on the airplane. Understanding the three-dimensional complex flow structure that surrounds this particular geometry is therefore of major industrial interest. At the light of the remarkable former investigations in this kind of flows, enough evidences suggest that the lateral walls have a great influence on the flow features and hence on their instability modes. Nevertheless, even though there is a large body of literature on cavity flows, most of them are based on the assumption that the flow is two-dimensional and spanwise-periodic. The flow over realistic open cavity should be considered. This thesis presents an investigation of three-dimensional wall-bounded open cavity with geometric ratio 6:2:1. To this aim, three-dimensional Direct Numerical Simulation (DNS) and global linear instability have been performed. Linear instability analysis reveals that the onset of the first instability in this open cavity is around Recr 1080. The three-dimensional shear layer mode with a complex structure is shown to be the most unstable mode. I t is noteworthy that the flow pattern of this high-frequency shear layer mode is similar to the observed unstable oscillations in supercritical unstable case. DNS of the cavity flow carried out at different Reynolds number from steady state until a nonlinear saturated state is obtained. The comparison of time histories of kinetic energy presents a clearly dominant energetic mode which shifts between low-frequency and highfrequency oscillation. A complete flow patterns from subcritical cases to supercritical case has been put in evidence. The flow structure at the supercritical case Re=1100 resembles typical wake-shedding instability oscillations with a lateral motion existed in the subcritical cases. Also, This flow pattern is similar to the observations in experiments. In order to validate the linear instability analysis results, the topology of the composite flow fields reconstructed by linear superposition of a three-dimensional base flow and its leading three-dimensional global eigenmodes has been studied. The instantaneous wall streamlines of those composited flows display distinguish influence region of each eigenmode. Attention has been focused on the leading high-frequency shear layer mode; the composite flow fields have been fully recognized with respect to the downstream wave shedding. The three-dimensional shear layer mode is shown to give rise to a typical wake-shedding instability with a lateral motions occurring downstream which is in good agreement with the experiment results. Moreover, the spanwise-periodic, open cavity with the same length to depth ratio has been also studied. The most unstable linear mode is different from the real three-dimensional cavity flow, because of the existence of the side walls. Structure sensitivity of the unstable global mode is analyzed in the flow control context. The adjoint-based sensitivity analysis has been employed to localized the receptivity region, where the flow is more sensible to momentum forcing and mass injection. Because of the non-normality of the linearized Navier-Stokes equations, the direct and adjoint field has a large spatial separation. The strongest sensitivity region is locate in the upstream lip of the three-dimensional cavity. This numerical finding is in agreement with experimental observations. Finally, a prototype of passive flow control strategy is applied.