2 resultados para Headspace

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agriculture significantly contributes to global greenhouse gas (GHG) missions and there is a need to develop effective mitigation strategies. The efficacy of methods to reduce GHG fluxes from agricultural soils can be affected by a range of interacting management and environmental factors. Uniquely, we used the Taguchi experimental design methodology to rank the relative importance of six factors known to affect the emission of GHG from soil: nitrate (NO3?) addition, carbon quality (labile and non-labile C), soil temperature, water-filled pore space (WFPS) and extent of soil compaction. Grassland soil was incubated in jars where selected factors, considered at two or three amounts within the experimental range, were combined in an orthogonal array to determine the importance and interactions between factors with a L16 design, comprising 16 experimental units. Within this L16 design, 216 combinations of the full factorial experimental design were represented. Headspace nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations were measured and used to calculate fluxes. Results found for the relative influence of factors (WFPS and NO3? addition were the main factors affecting N2O fluxes, whilst glucose, NO3? and soil temperature were the main factors affecting CO2 and CH4 fluxes) were consistent with those already well documented. Interactions between factors were also studied and results showed that factors with Little individual influence became more influential in combination. The proposed methodology offers new possibilities for GHG researchers to study interactions between influential factors and address the optimized sets of conditions to reduce GHG emissions in agro-ecosystems, while reducing the number of experimental units required compared with conventional experimental procedures that adjust one variable at a time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The early detection of spoiling metabolic products in contaminated food is a very important tool to control quality. Some volatile compounds produce unpleasant odours at very low concentrations, making their early detection very challenging. This is the case of 1,3-pentadiene produced by microorganisms through decarboxylation of the preservative sorbate. In this work, we have developed a methodology to use the data produced by a low-cost, compact MWIR (Mid-Wave IR) spectrometry device without moving parts, which is based on a linear array of 128 elements of VPD PbSe coupled to a linear variable filter (LVF) working in the spectral range between 3 and 4.6 ?m. This device is able to analyze food headspace gases through dedicated sample presentation setup. This methodology enables the detection of CO2 and the volatile compound 1,3-pentadiene, as compared to synthetic patrons. Data analysis is based on an automated multidimensional dynamic processing of the MWIR spectra. Principal component and discriminant analysis allow segregating between four yeast strains including producers and no producers. The segregation power is accounted as a measure of the discrimination quality.