4 resultados para Harvard University. Botanical museum. Ware collection of Blaschka glass models of flowers.

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work studied the combined use of gliadins and SSRs to analyse inter- and intra-accession variability of the Spanish collection of cultivated einkorn (Triticum monococcum L. ssp. monococcum) maintained at the CRF-INIA. In general, gliadin loci presented higher discrimination power than SSRs, reflecting the high variability of the gliadins. The loci on chromosome 6A were the most polymorphic with similar PIC values for both marker systems, showing that these markers are very useful for genetic variability studies in wheat. The gliadin results indicated that the Spanish einkorn collection possessed high genetic diversity, being the differentiation large between varieties and small within them. Some associations between gliadin alleles and geographical and agro-morphological data were found. Agro-morphological relations were also observed in the clusters of the SSRs dendrogram. A high concordance was found between gliadins and SSRs for genotype identification. In addition, both systems provide complementary information to resolve the different cases of intra-accession variability not detected at the agro-morphological level, and to identify separately all the genotypes analysed. The combined use of both genetic markers is an excellent tool for genetic resource evaluation in addition to agro-morphological evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objectives of this study were to assess diversity and genetic structure of a collection of Spanish durum wheat (Triticum turgidum L) landraces, using SSRs, DArTs and gliadin-markers, and to correlate the distribution of diversity with geographic and climatic features, as well as agro-morphological traits. A high level of diversity was detected in the genotypes analyzed, which were separated into nine populations with a moderate to great genetic divergence among them. The three subspecies taxa, dicoccon, turgidum and durum, present in the collection, largely determined the clustering of the populations. Genotype variation was lower in dicoccon (one major population) and turgidum (two major populations) than in durum (five major populations). Genetic differentiation by the agro-ecological zone of origin was greater in dicoccon and turgidum than in durum. DArT markers revealed two geographic substructures, east-west for dicoccon and northeast-southwest for turgidum. The ssp. durum had a more complex structure, consisting of seven populations with high intra-population variation. DArT markers allowed the detection of subgroups within some populations, with agro-morphological and gliadin differences, and distinct agro-ecological zones of origin. Two different phylogenetic groups were detected; revealing that some durum populations were more related to ssp. turgidum from northern Spain, while others seem to be more related to durum wheats from North Africa

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los factores de transcripción (FTs) son reguladores clave de la expresión génica en todos los organismos. En eucariotas los FTs con frecuencia están representados por miembros funcionalmente redundantes de familias génicas de gran tamaño. La sobreexpresión de FTs puede representar una herramienta para revelar las funciones biológicas de FTs redundantes en plantas; sin embargo, la sobreexpresión constitutiva de FTs con frecuencia conlleva diversos defectos en el desarrollo, impidiendo su caracterización funcional. Sin embargo, aproximaciones de sobreexpresión condicional podrían ayudar a solventar este problema. En el consorcio TRANSPLANTA, en el que participan varios laboratorios del CBGP, hemos generado una colección de líneas transgénicas de Arabidopsis, cada una de las cuales expresa un FT bajo el control de un promotor inducible por ?estradiol. Hasta el momento se han generado 1636 líneas homocigotas independientes que corresponden a 634 FTs diferentes, lo que representa una media de 2,6 líneas por cada FT. Como confirmación de la utilidad de esta herramienta, el tratamiento con ?estradiol de líneas que expresaban condicionalmente FTs provoca alteraciones fenotípicas tales como proliferación de pelos radiculares, senescencia inducida por oscuridad, acumulación de antocianinas y enanismo, y que corroboran fenotipos previamente descritos debidos a la sobreexpresión de dichos FTs. Rastreos realizados posteriormente con otras líneas TRANSPLANTA han permitido la identificación de FTs implicados en diferentes procesos biológicos de plantas, confirmando que la colección es una herramienta valiosa para la caracterización funcional de FTs. Las semillas de las líneas TRANSPLANTA han sido depositadas en el Nottingham Arabidopsis Stock Centre para su distribución posterior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcription factors (TFs) are key regulators of gene expression in all organisms. In eukaryotes, TFs are often represented by functionally redundant members of large gene families. Overexpression might prove a means to unveil the biological functions of redundant TFs; however, constitutive overexpression of TFs frequently causes severe developmental defects, preventing their functional characterization. Conditional overexpression strategies help to overcome this problem. Here, we report on the TRANSPLANTA collection of Arabidopsis lines, each expressing one of 949 TFs under the control of a β–estradiol-inducible promoter. Thus far, 1636 independent homozygous lines, representing an average of 2.6 lines for every TF, have been produced for the inducible expression of 634 TFs. Along with a GUS-GFP reporter, randomly selected TRANSPLANTA lines were tested and confirmed for conditional transgene expression upon β–estradiol treatment. As a proof of concept for the exploitation of this resource, β–estradiol-induced proliferation of root hairs, dark-induced senescence, anthocyanin accumulation and dwarfism were observed in lines conditionally expressing full-length cDNAs encoding RHD6, WRKY22, MYB123/TT2 and MYB26, respectively, in agreement with previously reported phenotypes conferred by these TFs. Further screening performed with other TRANSPLANTA lines allowed the identification of TFs involved in different plant biological processes, illustrating that the collection is a powerful resource for the functional characterization of TFs. For instance, ANAC058 and a TINY/AP2 TF were identified as modulators of ABA-mediated germination potential, and RAP2.10/DEAR4 was identified as a regulator of cell death in the hypocotyl–root transition zone. Seeds of TRANSPLANTA lines have been deposited at the Nottingham Arabidopsis Stock Centre for further distribution.