14 resultados para Handcrafted rockets

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large free liquid volumes, 30 mm in diameter and 80 mm long, anchored to coaxial discs, have been achieved during a sounding-rocket flight. As these flights provide some six minutes of microgravity and the formation of the liquid column takes only a matter of seconds, ample time is left for experimentation. The results of these trials are presented, and the equipment used to obtain them is briefly described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The product of the tether-to-satellite mass ratio and the probability of tether cuts by small debris must be small to make electrodynamic bare tethers a competitive and useful de-orbiting technology. In the case of a circular orbit and assuming a model for the debris population, the product can be written as a function that just depends on the initial orbit parameters (altitude and inclination) and the tether geometry. This formula, which does not contain the time explicitly and ignores the details of the tether dynamics during the de-orbiting, is used to find design rules for the tape dimensions and the orbit parameter ranges where tethers dominate other de-orbiting technologies like rockets, electrical propulsion, and sails.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatively short electrodynamic tethers can extract orbital energy to "push" against a planetary magnetic field to achieve propulsion without the expenditure of propellant. The Propulsive Small Expendable Deployer System experiment will use the flight-proven Small Expendable Deployer System to deploy a 5-km bare aluminum tether from a Delta II upper stage to achieve ~0.4-N drag thrust, thus lowering the altitude of the stage. The experiment will use a predominantly bare tether for current collection in lieu of the endmass collector and insulated tether used on previous missions. The flight experiment is a precursor to a more ambitious electrodynamic tether upper-stage demonstration mission that will be capable of orbit-raising,lowering, and inclination changes, all using electrodynamic thrust. The expected performance of the tether propulsion system during the experiment is described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrodynamic tether thrusters can use the power provided by solar panels to drive a current in the tether and then the Lorentz force to push against the Earth's magnetic field, thereby achieving propulsion without the expenditure of onboard energy sources or propellant. Practical tether propulsion depends critically on being able to extract multiamp electron currents from the ionosphere with relatively short tethers (10 km or less) and reasonably low power. We describe a new anodic design that uses an uninsulated portion of the metallic tether itself to collect electrons. Because of the efficient collection of this type of anode, electrodynamic thrusters for reboost of the International Space Station and for an upper stage capable of orbit raising, lowering, and inclination changes appear to be feasible. Specifically, a 10-km-long bare tether, utilizing 10 kW of the space station power could save most of the propellant required for the station reboost over its 10-year lifetime. The propulsive small expendable deployer system experiment is planned to test the bare-tether design in space in the year 2000 by deploying a 5-km bare aluminum tether from a Delta II upper stage to achieve up to 0.5-N drag thrust, thus deorbiting the stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrodynamic tethered systems, in which an exposed portion of the conducting tether itself collects electrons from the ionosphere, promise to attain currents of 10 A or more in low Earth orbit. For the first time, another desirable feature of such bare-tether systems is reported and analyzed in detail: Collection by a bare tether is relatively insensitive to variations in electron density that are regularly encountered on each revolution of an orbit. This self-adjusting property of bare-tether systems occurs because the electron-collecting area on the tether is not fixed, but extends along its positively biased portion, and because the current varies as collecting length to a power greater than unity. How this adjustment to density variations follows from the basic collection law of thin cylinders is shown. The effect of variations in the motionally induced tether voltage is also analyzed. Both power and thruster modes are considered. The performance of bare-tether systems to tethered systems is compared using passive spherical collectors of fixed area, taking into consideration recent experimental results. Calculations taking into account motional voltage and plasma density around a realistic orbit for bare-tether systems suitable for space station applications are also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Performances, design criteria, and system mass of bare tethers for satellite deorbiting missions are analyzed. Orbital conditions and tether cross section define a tether length, such that 1) shorter tethers are electron collecting practically in their whole extension and 2) longer tethers collect practically the short-circuit current in a fixed segment length. Long tethers have a higher drag efficiency (defined as the drag force vs the tether mass) and are better adapted to adverse plasma densities. Dragging efficiency and mission-related costs are used to define design criteria for tether geometry. A comparative analysis with electric thrusters shows that bare tethers have much lower costs for low- and midinclination orbits and remain an attractive option up to 70 deg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance efficiency of electrodynamic bare tethers acting as thrusters in low Earth orbit, as gauged by the ratio of the system mass dedicated to thrust over mission impulse, is analyzed and compared to the performance efficiency of electrical thrusters. Tether systems are much lighter for times beyond six months in space-tug operations, where there is a dedicated solar array, and beyond one month for reboost of the International Space Station, where the solar array is already in place. Bare-tether propulsive efficiency itself, with the tether considered as part of the power plant, is higher for space tugs. Tether optimization shows that thin tapes have greater propulsive efficiency and are less sensitive to plasma density variations in orbit than cylindrical tethers. The efficiency increases with tape length if some segment next to the power supply at the top is insulated to make the tether potential bias vanish at the lower end; multitape tethers must be used to keep the efficiency high at high thrust levels. The efficiency has a maximum for tether-hardware mass equal to the fraction of power-subsystem mass going into ohmic power, though the maximum is very flat. For space tugs, effects of induced-bias changes in orbit might need to be reduced by choosing a moderately large power-subsystem to tether-hardware mass ratio or by tracking the current-voltage characteristic of the solar array.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Propulsion and power generation by bare electrodynamic tethers are revisited in a unified way and issues and constraints are addressed. In comparing electrodynamic tethers, which do not use propellant, with other propellantconsuming systems, mission duration is a discriminator that defines crossover points for systems with equal initial masses. Bare tethers operating in low Earth orbit can be more competitive than optimum ion thrusters in missions exceeding two-three days for orbital deboost and three weeks for boosting operations. If the tether produces useful onboard power during deboost, the crossover point reaches to about 10 days. Power generation by means of a bare electrodynamic tether in combination with chemical propulsion to maintain orbital altitude of the system is more efficient than use of the same chemicals (liquid hydrogen and liquid oxygen) in a fuel cell to produce power for missions longer than one week. Issues associated with tether temperature, bowing, deployment, and arcing are also discussed. Heating/cooling rates reach about 4 K/s for a 0.05-mm-thick tape and a fraction of Kelvin/second for the ProSEDS (0.6-mm-radius) wire; under dominant ohmic effects, temperatures areover200K (night) and 380 K (day) for the tape and 320 and 415 K for that wire. Tether applications other than propulsion and power are briefly discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current space environment, consisting of manmade debris and micrometeoroids, poses a risk to safe operations in space, and the situation is continuously deteriorating due to in-orbit debris collisions and to new satellite launches. Bare electrodynamic tethers can provide an efficient mechanism for rapid deorbiting of satellites from low Earth orbit at end of life. Because of its particular geometry (length very much larger than cross-sectional dimensions), a tether may have a relatively high risk of being severed by the single impact of small debris. The rates of fatal impact of orbital debris on round and tape tethers of equal length and mass, evaluated with an analytical approximation to debris flux modeled by NASA’s ORDEM2000, shows much higher survival probability for tapes. A comparative numerical analysis using debris flux model ORDEM2000 and ESA’s MASTER2005 validates the analytical result and shows that, for a given time in orbit, a tape has a probability of survival of about one and a half orders of magnitude higher than a round tether of equal mass and length. Because deorbiting from a given altitude is much faster for the tape due to its larger perimeter, its probability of survival in a practical sense is quite high.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes and analyzes the use of a nonrotating tethered system for a direct capture in Jovian orbit using the electrodynamic force generated along the cable. A detailed dynamical model is developed showing a strong gravitational and electrodynamic coupling between the center of mass and the attitude motions. This paper shows the feasibility of a direct capture in Jovian orbit of a rigid tethered system preventing the tether from rotating. Additional mechanical–thermal requirements are explored, and preliminary operational limits are defined to complete the maneuver. In particular, to ensure that the system remains nonrotating, a nominal attitude profile for a self-balanced electrodynamic tether is proposed, as well as a simple feedback control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current research aims to analyse theoretically and evaluate a self-manufactured simple design for subsurface drip irrigation (SDI) emitter to avoid root and soil intrusion. It was composed of three concentric cylindrical elements: an elastic silicone membrane; a polyethylene tube with two holes drilled on its wall for water discharge; and a vinyl polychloride protector system to wrap the other elements. The discharge of the emitter depends on the change in the membrane diameter when it is deformed by the water pressure. The study of the operation of this emitter is a new approach that considers mechanical and hydraulic principles. Thus, the estimation on the membrane deformation was based on classical mechanical stress theories in composite cylinders. The hydraulic principles considered the solid deformation due to force based on water pressure and the general Darcy–Weisbach head-loss equation. Twenty emitter units, with the selected design, were handcrafted in a lathe and were used in this study. The measured pressure/discharge relationship for the emitters showed good agreement with that calculated by the theoretical approach. The variation coefficient of the handcrafted emitters was high compared to commercial emitters. Results from field evaluations showed variable values for the relative flow variation, water emission uniformity and relative flow rate coefficients, but no emitter was obstructed. Therefore, the current emitter design could be suitable for SDI following further studies to develop a final prototype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Universidad Politécnica de Madrid participates in the MINISAT 01 program as the experiment CPLM responsible. This experiment aims at the study of the fluid behaviour in reduced gravity conditions. The interest of this study is and has been widely recognised by the scientific community and has potential applications in the pharmaceutical and microelectronic technologies (crystal growth), among others. The scientific team which has developed the CPLM experiment has a wide experience in this field and had participate in the performance of a large number of experiments on the fluid behaviour in reduced gravity conditions in flight (Spacelab missions, TEXUS sounding rockets, KC-135 and Caravelle aeroplanes, drop towers, as well as on earth labs (neutralbuoyancy and small scale simulations). The experimental equipment used in CPLMis a version of the payload developed for experimentation on drop towers and on board microsatellites as the UPM-Sat 1, adapted to fly on board MINISAT 01.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The accelerometers used for the measurement of microvibrations or microgravity applications, such as active control of space structures, attitude control, scientific payloads, or even on-Earth testing of structures at very low-excitation levels, require a dedicated calibration procedure that includes the gravitational effects. Otherwise, on-Earth calibrations can be inaccurate due to the collateral projection of the local gravity onto the sensitive axis. An on-Earth calibration technique for the 107102s amplitude range and 0-100-Hz frequency range is described. Special attention has been given to the modeling of gravitational effects on the response of the calibration device and the accelerometer itself. The sensitivity and resolution tests performed on piezoelectric accelerometers showthe accuracy andthe potential of thistechnique. Typical scale factorun certainty, which hasbeen carefully analyzed, is of the order of 2% at acceleration levels of 10sg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pressure variation inside the launch vehicle fairing during climb through the atmosphere induces structural loads on the walls of closed-type spacecrafts or equipment boxes. If the evacuation of the air is not fast enough, excessive pressure loading can result in damage of elements exposed to the rising pressure jump, which depends mainly on the geometry of venting holes, the effective volume of air to be evacuated, and the characteristic time of pressure variation under the fairing. A theoretical study of the reservoir discharge forced by the fairing time-dependent pressure variation is presented. The basic mathematical model developed can yield both a numerical solution for the pressure jump and an asymptotic solution for the most relevant case, the small-prcssurc-jump limit, showing the dependence on a single nondimensional parameter: the ratio of the reservoir discharge to the fairing pressure profile characteristic times. The asymptotic solution validity range upper limit, obtained by comparison with the numerical solution, is determined by the starting of choked operation. Very high sensitivity of the maximum pressure jump to the ratio of characteristic times has been observed. Another relevant finding is that the pressure profiles for different launchers can be considered similar when rewritten in appropriate form and only their characteristic times are required for the analysis. The simple expressions of the asymptotic solution are a useful tool for preliminarily sizing the reservoir discharge geometry and estimating depressurization loads