19 resultados para HYDRODYNAMIC TURBULENCE
em Universidad Politécnica de Madrid
Resumo:
In this work, a combination of numerical methods applied to thermohydrodynamic lubrication problems with cavitation is presented. It should be emphasized the difficulty of the nonlinear mathematical coupled model involving a free boundary problem, but also the simplicity of the algorithms employed to solve it. So, finite element discretizations for the hydrodynamic and thermal equations combined with upwind techniques for the convection terms and duality methods for nonlinear features are proposed. Additionally, a model describing the movement of the shaft is provided. Considering the shaft as a rigid body this model will consist of an ODE system relating acceleration of the center of gravity and external and pressure loads. The numerical experiments of mechanical stability try to clarify the position of the neutral stability curve. Finally, a rotating machine for ship propulsion involving both axial and radial bearings operating with nonconventional lubricants (seawater to avoid environmental pollution) is analyzed by using laminar and turbulent inertial flows.
Resumo:
Large-scale structure formation can be modeled as a nonlinear process that transfers energy from the largest scales to successively smaller scales until it is dissipated, in analogy with Kolmogorov’s cascade model of incompressible turbulence. However, cosmic turbulence is very compressible, and vorticity plays a secondary role in it. The simplest model of cosmic turbulence is the adhesion model, which can be studied perturbatively or adapting to it Kolmogorov’s non-perturbative approach to incompressible turbulence. This approach leads to observationally testable predictions, e.g., to the power-law exponent of the matter density two-point correlation function.
Resumo:
The problem of determination of the turbulence onset in natural convection on heated inclined plates in an air environment has been experimentally revisited. The transition has been detected by using hot wire velocity measurements. The onset of turbulence has been considered to take place where velocity fluctuations (measured through turbulence intensity) start to grow. Experiments have shown that the onset depends not only on the Grashof number defined in terms of the temperature difference between the heated plate and the surrounding air. A correlation between dimensionless Grashof and Reynolds numbers has been obtained, fitting quite well the experimental data.
Resumo:
The aim of inertial confinement fusion is the production of energy by the fusion of thermonuclear fuel (deuterium-tritium) enclosed in a spherical target due to its implosion. In the direct-drive approach, the energy needed to spark fusion reactions is delivered by the irradiation of laser beams that leads to the ablation of the outer shell of the target (the so-called ablator). As a reaction to this ablation process, the target is accelerated inwards, and, provided that this implosion is sufficiently strong a symmetric, the requirements of temperature and pressure in the center of the target are achieved leading to the ignition of the target (fusion). One of the obstacles capable to prevent appropriate target implosions takes place in the ablation region where any perturbation can grow even causing the ablator shell break, due to the ablative Rayleigh-Taylor instability. The ablative Rayleigh-Taylor instability has been extensively studied throughout the last 40 years in the case where the density/temperature profiles in the ablation region present a single front (the ablation front). Single ablation fronts appear when the ablator material has a low atomic number (deuterium/tritium ice, plastic). In this case, the main mechanism of energy transport from the laser energy absorption region (low density plasma) to the ablation region is the electron thermal conduction. However, recently, the use of materials with a moderate atomic number (silica, doped plastic) as ablators, with the aim of reducing the target pre-heating caused by suprathermal electrons generated by the laser-plasma interaction, has demonstrated an ablation region composed of two ablation fronts. This fact appears due to increasing importance of radiative effects in the energy transport. The linear theory describing the Rayleigh-Taylor instability for single ablation fronts cannot be applied for the stability analysis of double ablation front structures. Therefore, the aim of this thesis is to develop, for the first time, a linear stability theory for this type of hydrodynamic structures.
Resumo:
The Kolmogorov approach to turbulence is applied to the Burgers turbulence in the stochastic adhesion model of large-scale structure formation. As the perturbative approach to this model is unreliable, here a new, non-perturbative approach, based on a suitable formulation of Kolmogorov's scaling laws, is proposed. This approach suggests that the power-law exponent of the matter density two-point correlation function is in the range 1–1.33, but it also suggests that the adhesion model neglects important aspects of the gravitational dynamics.
Resumo:
An elliptic computational fluid dynamics wake model based on the actuator disk concept is used to simulate a wind turbine, approximated by a disk upon which a distribution of forces, defined as axial momentum sources, is applied on an incoming non-uniform shear flow. The rotor is supposed to be uniformly loaded with the exerted forces estimated as a function of the incident wind speed, thrust coefficient and rotor diameter. The model is assessed in terms of wind speed deficit and added turbulence intensity for different turbulence models and is validated from experimental measurements of the Sexbierum wind turbine experiment.
Resumo:
Análisis de sensibilidad de modelos de turbulencia para un modelo CFD de viento aplicados a un emplazamiento en terreno complejo. Validación con datos de viento y turbulencia registrados a 3 alturas en 3 torres de medida.
Resumo:
A simplified CFD wake model based on the actuator disk concept is used to simulate the wind turbine, represented by a disk upon which a distribution of forces, defined as axial momentum sources, are applied on the incoming non-uniform flow. The rotor is supposed to be uniformly loaded, with the exerted forces function of the incident wind speed, the thrust coefficient and the rotor diameter. The model is tested under different parameterizations of turbulence models and validated through experimental measurements downwind of a wind turbine in terms of wind speed deficit and turbulence intensity.
Resumo:
Wake effect represents one of the most important aspects to be analyzed at the engineering phase of every wind farm since it supposes an important power deficit and an increase of turbulence levels with the consequent decrease of the lifetime. It depends on the wind farm design, wind turbine type and the atmospheric conditions prevailing at the site. Traditionally industry has used analytical models, quick and robust, which allow carry out at the preliminary stages wind farm engineering in a flexible way. However, new models based on Computational Fluid Dynamics (CFD) are needed. These models must increase the accuracy of the output variables avoiding at the same time an increase in the computational time. Among them, the elliptic models based on the actuator disk technique have reached an extended use during the last years. These models present three important problems in case of being used by default for the solution of large wind farms: the estimation of the reference wind speed upstream of each rotor disk, turbulence modeling and computational time. In order to minimize the consequence of these problems, this PhD Thesis proposes solutions implemented under the open source CFD solver OpenFOAM and adapted for each type of site: a correction on the reference wind speed for the general elliptic models, the semi-parabollic model for large offshore wind farms and the hybrid model for wind farms in complex terrain. All the models are validated in terms of power ratios by means of experimental data derived from real operating wind farms.
Resumo:
Se cuantifican las descargas subterráneas de un acuífero a un río que lo atraviesa utilizando correlaciones estadísticas. El río Duero, España, incrementa su caudal base en varios m3/s, al atravesar unos afloramientos carbonatados mesozoicos en un pequeño tramo de su cabecera; esto es de especial importancia en época de estiaje, cuando la mayor parte del caudal base del río procede de manantiales que allí se sitúan. Dichos afloramientos corresponden a uno de los dos acuíferos calcáreos confinados, que se desarrollan en paralelo y están hidráulicamente desconectados por una capa impermeable, que forman el sistema acuífero de los manantiales de Gormaz. Este sistema se encuentra en estado de régimen natural y está apenas explotado. Se define el modelo conceptual de funcionamiento hidrogeológico, considerando el papel hidrogeológico de la falla de Gormaz, situada en la zona de descarga del sistema. Analizando información geológica antecedente y la geofísica exploratoria realizada, se obtuvo un mejor conocimiento de la geometría y los límites de los acuíferos, definiéndose un sistema acuífero con una zona de recarga en el sur, correspondiente a los afloramientos calcáreos, los cuales se confinan hacia el norte bajo el Terciario, hasta intersecar con la falla normal de Gormaz. El salto de falla genera una barrera para las formaciones permeables situadas al extremo norte (margen derecha del río Duero); a su vez, el plano de falla facilita el ascenso del agua subterránea del sistema acuífero en estudio y pone en conexión hidráulica los dos acuíferos. Se estimaron, además, los parámetros hidráulicos de los acuíferos en los alrededores de la falla. La buena correlación entre los niveles piezométricos y las descargas subterráneas al río Duero han permitido la reconstrucción del hidrograma de los manantiales de Gormaz en el periodo 1992-2006. Se calcula así que la contribución subterránea al río Duero es de 135.9 hm3/año, que supone el 18.9% de la aportación total del río. In a short stretch of its headwaters, the base flow of the River Duero increases by several m3/s as it traverses some Mesozoic carbonate outcrops. This is of special importance during the dry season, when the majority of the base flow of the river proceeds from springs in this reach. The outcrops correspond to one of two confined calcareous aquifers that developed in parallel but which are not hydraulically connected because of an impermeable layer. Together, they constitute the aquifer system of the Gormaz Springs. The system is still in its natural regime and is hardly exploited. This study defines the conceptual model of hydrogeological functioning, taking into consideration the role of the Gormaz Fault, which is situated in the discharge zone of the system. Analysis of both antecedent geological information and geophysical explorations has led to a better understanding of the geometry and boundaries of the aquifers, defining an aquifer system with a recharge zone in the south corresponding to in the calcareous outcrops. These calcareous outcrops are confined to the north below Tertiary formations, as far as their intersection with the normal fault of Gormaz. The throw of the fault forms the barrier of the permeable formations situated in the extreme north (right bank of the River Duero). In turn, the fault plane facilitates the upflow of groundwater from the aquifer system and creates hydraulic connection between the two aquifers. In addition, the study estimated the hydraulic parameters of the aquifer around the fault. The close correlation between piezometric levels and the groundwater discharges to the River Duero has enabled the reconstruction of the hydrogram of Gormaz springs over the period 1992-2006. By this means, it is calculated that the groundwater contribution to the River Duero is 135.9 hm3/year, or 18.9% of the total river inflow.
Resumo:
La energía eólica marina es uno de los recursos energéticos con mayor proyección pudiendo contribuir a reducir el consumo de combustibles fósiles y a cubrir la demanda de energía en todo el mundo. El concepto de aerogenerador marino está basado en estructuras fijas como jackets o en plataformas flotantes, ya sea una semisumergible o una TLP. Se espera que la energía eólica offshore juegue un papel importante en el perfil de producción energética de los próximos años; por tanto, las turbinas eólicas deben hacerse más fables y rentables para ser competitivas frente a otras fuentes de energía. Las estructuras flotantes pueden experimentar movimientos resonantes en estados de la mar con largos períodos de oleaje. Estos movimientos disminuyen su operatividad y pueden causar daños en los componentes eléctricos de las turbinas y en las palas, también en los risers y moorings. La respuesta de la componente vertical del movimiento puede reducirse mediante diferentes actuaciones: (1) aumentando la amortiguación del sistema, (2) manteniendo el período del movimiento vertical fuera del rango de la energía de la ola, y (3) reduciendo las fuerzas de excitación verticales. Un ejemplo típico para llevar a cabo esta reducción son las "Heave Plates". Las heave plates son placas que se utilizan en la industria offshore debido a sus características hidrodinámicas, ya que aumentan la masa añadida y la amortiguación del sistema. En un análisis hidrodinámico convencional, se considera una estructura sometida a un oleaje con determinadas características y se evalúan las cargas lineales usando la teoría potencial. El amortiguamiento viscoso, que juega un papel crucial en la respuesta en resonancia del sistema, es un dato de entrada para el análisis. La tesis se centra principalmente en la predicción del amortiguamiento viscoso y de la masa añadida de las heave plates usadas en las turbinas eólicas flotantes. En los cálculos, las fuerzas hidrodinámicas se han obtenido con el f n de estudiar cómo los coeficientes hidrodinámicos de masa añadida5 y amortiguamiento varían con el número de KC, que caracteriza la amplitud del movimiento respecto al diámetro del disco. Por otra parte, se ha investigado la influencia de la distancia media de la ‘heave plate’ a la superficie libre o al fondo del mar, sobre los coeficientes hidrodinámicos. En este proceso, un nuevo modelo que describe el trabajo realizado por la amortiguación en función de la enstrofía, es descrito en el presente documento. Este nuevo enfoque es capaz de proporcionar una correlación directa entre el desprendimiento local de vorticidad y la fuerza de amortiguación global. El análisis también incluye el estudio de los efectos de la geometría de la heave plate, y examina la sensibilidad de los coeficientes hidrodinámicos al incluir porosidad en ésta. Un diseño novedoso de una heave plate, basado en la teoría fractal, también fue analizado experimentalmente y comparado con datos experimentales obtenidos por otros autores. Para la resolución de las ecuaciones de Navier Stokes se ha usado un solver basado en el método de volúmenes finitos. El solver usa las librerías de OpenFOAM (Open source Field Operation And Manipulation), para resolver un problema multifásico e incompresible, usando la técnica VOF (volume of fluid) que permite capturar el movimiento de la superficie libre. Los resultados numéricos han sido comparados con resultados experimentales llevados a cabo en el Canal del Ensayos Hidrodinámicos (CEHINAV) de la Universidad Politécnica de Madrid y en el Canal de Experiencias Hidrodinámicas (CEHIPAR) en Madrid, al igual que con otros experimentos realizados en la Escuela de Ingeniería Mecánica de la Universidad de Western Australia. Los principales resultados se presentan a continuación: 1. Para pequeños valores de KC, los coeficientes hidrodinámicos de masa añadida y amortiguamiento incrementan su valor a medida que el disco se aproxima al fondo marino. Para los casos cuando el disco oscila cerca de la superficie libre, la dependencia de los coeficientes hidrodinámicos es más fuerte por la influencia del movimiento de la superficie libre. 2. Los casos analizados muestran la existencia de un valor crítico de KC, donde la tendencia de los coeficientes hidrodinámicos se ve alterada. Dicho valor crítico depende de la distancia al fondo marino o a la superficie libre. 3. El comportamiento físico del flujo, para valores de KC cercanos a su valor crítico ha sido estudiado mediante el análisis del campo de vorticidad. 4. Introducir porosidad al disco, reduce la masa añadida para los valores de KC estudiados, pero se ha encontrado que la porosidad incrementa el valor del coeficiente de amortiguamiento cuando se incrementa la amplitud del movimiento, logrando un máximo de damping para un disco con 10% de porosidad. 5. Los resultados numéricos y experimentales para los discos con faldón, muestran que usar este tipo de geometrías incrementa la masa añadida cuando se compara con el disco sólido, pero reduce considerablemente el coeficiente de amortiguamiento. 6. Un diseño novedoso de heave plate basado en la teoría fractal ha sido experimentalmente estudiado a diferentes calados y comparado con datos experimentales obtenidos por otro autores. Los resultados muestran un comportamiento incierto de los coeficientes y por tanto este diseño debería ser estudiado más a fondo. ABSTRACT Offshore wind energy is one of the promising resources which can reduce the fossil fuel energy consumption and cover worldwide energy demands. Offshore wind turbine concepts are based on either a fixed structure as a jacket or a floating offshore platform like a semisubmersible, spar or tension leg platform. Floating offshore wind turbines have the potential to be an important part of the energy production profile in the coming years. In order to accomplish this wind integration, these wind turbines need to be made more reliable and cost efficient to be competitive with other sources of energy. Floating offshore artifacts, such oil rings and wind turbines, may experience resonant heave motions in sea states with long peak periods. These heave resonances may increase the system downtime and cause damage on the system components and as well as on risers and mooring systems. The heave resonant response may be reduced by different means: (1) increasing the damping of the system, (2) keeping the natural heave period outside the range of the wave energy, and (3) reducing the heave excitation forces. A typical example to accomplish this reduction are “Heave Plates”. Heave plates are used in the offshore industry due to their hydrodynamic characteristics, i.e., increased added mass and damping. Conventional offshore hydrodynamic analysis considers a structure in waves, and evaluates the linear and nonlinear loads using potential theory. Viscous damping, which is expected to play a crucial role in the resonant response, is an empirical input to the analysis, and is not explicitly calculated. The present research has been mainly focused on the prediction of viscous damping and added mass of floating offshore wind turbine heave plates. In the calculations, the hydrodynamic forces have been measured in order to compute how the hydrodynamic coefficients of added mass1 and damping vary with the KC number, which characterises the amplitude of heave motion relative to the diameter of the disc. In addition, the influence on the hydrodynamic coefficients when the heave plate is oscillating close to the free surface or the seabed has been investigated. In this process, a new model describing the work done by damping in terms of the flow enstrophy, is described herein. This new approach is able to provide a direct correlation between the local vortex shedding processes and the global damping force. The analysis also includes the study of different edges geometry, and examines the sensitivity of the damping and added mass coefficients to the porosity of the plate. A novel porous heave plate based on fractal theory has also been proposed, tested experimentally and compared with experimental data obtained by other authors for plates with similar porosity. A numerical solver of Navier Stokes equations, based on the finite volume technique has been applied. It uses the open-source libraries of OpenFOAM (Open source Field Operation And Manipulation), to solve 2 incompressible, isothermal immiscible fluids using a VOF (volume of fluid) phase-fraction based interface capturing approach, with optional mesh motion and mesh topology changes including adaptive re-meshing. Numerical results have been compared with experiments conducted at Technical University of Madrid (CEHINAV) and CEHIPAR model basins in Madrid and with others performed at School of Mechanical Engineering in The University of Western Australia. A brief summary of main results are presented below: 1. At low KC numbers, a systematic increase in added mass and damping, corresponding to an increase in the seabed proximity, is observed. Specifically, for the cases when the heave plate is oscillating closer to the free surface, the dependence of the hydrodynamic coefficients is strongly influenced by the free surface. 2. As seen in experiments, a critical KC, where the linear trend of the hydrodynamic coefficients with KC is disrupted and that depends on the seabed or free surface distance, has been found. 3. The physical behavior of the flow around the critical KC has been explained through an analysis of the flow vorticity field. 4. The porosity of the heave plates reduces the added mass for the studied porosity at all KC numbers, but the porous heave plates are found to increase the damping coefficient with increasing amplitude of oscillation, achieving a maximum damping coefficient for the heave plate with 10% porosity in the entire KC range. 5. Another concept taken into account in this work has been the heave plates with flaps. Numerical and experimental results show that using discs with flaps will increase added mass when compared to the plain plate but may also significantly reduce damping. 6. A novel heave plate design based on fractal theory has tested experimentally for different submergences and compared with experimental data obtained by other authors for porous plates. Results show an unclear behavior in the coefficients and should be studied further. Future work is necessary in order to address a series of open questions focusing on 3D effects, optimization of the heave plates shapes, etc.
Resumo:
A numerical simulation of the aerodynamic behavior of high-speed trains under synthetic crosswinds at a 90º yaw angle is presented. The train geometry is the aerodynamic train model (ATM). Flow description based on numerical simulations is obtained using large eddy simulation (LES) and the commercial code ANSYSFluent V14.5. A crosswind whose averaged velocity and turbulence characteristics change with distance to the ground is imposed. Turbulent fluctuations that vary temporally and spatially are simulated with TurbSim code. The crosswind boundary condition is calculated for the distance the train runs during a simulation period. The inlet streamwise velocity boundary condition is generated using Taylor?s frozen turbulence hypothesis. The model gives a time history of the force and moments acting on the train; this includes averaged values, standard deviations and extreme values. Of particular interest are the spectra of the forces and moments, and the admittance spectra. For comparison, results obtained with LES and a uniform wind velocity fluctuating in time, and results obtained with Reynolds averaged Navier Stokes equations (RANS), and the averaged wind conditions, are also presented.
Resumo:
The characteristics of turbulent/nonturbulent interfaces (TNTI) from boundary layers, jets and shear-free turbulence are compared using direct numerical simulations. The TNTI location is detected by assessing the volume of turbulent flow as function of the vorticity magnitude and is shown to be equivalent to other procedures using a scalar field. Vorticity maps show that the boundary layer contains a larger range of scales at the interface than in jets and shear-free turbulence where the change in vorticity characteristics across the TNTI is much more dramatic. The intermittency parameter shows that the extent of the intermittency region for jets and boundary layers is similar and is much bigger than in shear-free turbulence, and can be used to compute the vorticity threshold defining the TNTI location. The statistics of the vorticity jump across the TNTI exhibit the imprint of a large range of scales, from the Kolmogorov micro-scale to scales much bigger than the Taylor scale. Finally, it is shown that contrary to the classical view, the low-vorticity spots inside the jet are statistically similar to isotropic turbulence, suggesting that engulfing pockets simply do not exist in jets
Resumo:
This study shows the air flow behavior through the geometry of a freight truck inside a AF6109 wind tunnel with the purpose to predict the speed, pressure and turbulence fields made by the air flow, to decrease the aerodynamic resistance, to calculate the dragging coefficient, to evaluate the aerodynamics of the geometry of the prototype using the CFD technique and to compare the results of the simulation with the results obtained experimentally with the “PETER 739 HAULER” scaled freight truck model located on the floor of the test chamber. The Geometry went through a numerical simulation process using the CFX 5,7. The obtained results showed the behavior of the air flow through the test chamber, and also it showed the variations of speed and pressure at the exit of the chamber and the calculations of the coefficient and the dragging force on the geometry of the freight truck. The evaluation of the aerodynamics showed that the aerodynamic deflector is a device that helped the reduction the dragging produced in a significant way by the air. Furthermore, the dragging coefficient and force on the prototype freight truck could be estimated establishing an incomplete similarity.
Resumo:
Los recientes desarrollos tecnológicos permiten la transición de la oceanografía observacional desde un concepto basado en buques a uno basado en sistemas autónomos en red. Este último, propone que la forma más eficiente y efectiva de observar el océano es con una red de plataformas autónomas distribuidas espacialmente y complementadas con sistemas de medición remota. Debido a su maniobrabilidad y autonomía, los planeadores submarinos están jugando un papel relevante en este concepto de observaciones en red. Los planeadores submarinos fueron específicamente diseñados para muestrear vastas zonas del océano. Estos son robots con forma de torpedo que hacen uso de su forma hidrodinámica, alas y cambios de flotabilidad para generar movimientos horizontales y verticales en la columna de agua. Un sensor que mide conductividad, temperatura y profundidad (CTD) constituye un equipamiento estándar en la plataforma. Esto se debe a que ciertas variables dinámicas del Océano se pueden derivar de la temperatura, profundidad y salinidad. Esta última se puede estimar a partir de las medidas de temperatura y conductividad. La integración de sensores CTD en planeadores submarinos no esta exenta de desafíos. Uno de ellos está relacionado con la precisión de los valores de salinidad derivados de las muestras de temperatura y conductividad. Específicamente, las estimaciones de salinidad están significativamente degradadas por el retardo térmico existente, entre la temperatura medida y la temperatura real dentro de la celda de conductividad del sensor. Esta deficiencia depende de las particularidades del flujo de entrada al sensor, su geometría y, también se ha postulado, del calor acumulado en las capas de aislamiento externo del sensor. Los efectos del retardo térmico se suelen mitigar mediante el control del flujo de entrada al sensor. Esto se obtiene generalmente mediante el bombeo de agua a través del sensor o manteniendo constante y conocida su velocidad. Aunque recientemente se han incorporado sistemas de bombeo en los CTDs a bordo de los planeadores submarinos, todavía existen plataformas equipadas con CTDs sin dichos sistemas. En estos casos, la estimación de la salinidad supone condiciones de flujo de entrada al sensor, razonablemente controladas e imperturbadas. Esta Tesis investiga el impacto, si existe, que la hidrodinámica de los planeadores submarinos pudiera tener en la eficiencia de los sensores CTD. Específicamente, se investiga primero la localización del sensor CTD (externo al fuselaje) relativa a la capa límite desarrollada a lo largo del cuerpo del planeador. Esto se lleva a cabo mediante la utilización de un modelo acoplado de fluido no viscoso con un modelo de capa límite implementado por el autor, así como mediante un programa comercial de dinámica de fluidos computacional (CFD). Los resultados indican, en ambos casos, que el sensor CTD se encuentra fuera de la capa límite, siendo las condiciones del flujo de entrada las mismas que las del flujo sin perturbar. Todavía, la velocidad del flujo de entrada al sensor CTD es la velocidad de la plataforma, la cual depende de su hidrodinámica. Por tal motivo, la investigación se ha extendido para averiguar el efecto que la velocidad de la plataforma tiene en la eficiencia del sensor CTD. Con este propósito, se ha desarrollado un modelo en elementos finitos del comportamiento hidrodinámico y térmico del flujo dentro del CTD. Los resultados numéricos indican que el retardo térmico, atribuidos originalmente a la acumulación de calor en la estructura del sensor, se debe fundamentalmente a la interacción del flujo que atraviesa la celda de conductividad con la geometría interna de la misma. Esta interacción es distinta a distintas velocidades del planeador submarino. Específicamente, a velocidades bajas del planeador (0.2 m/s), la mezcla del flujo entrante con las masas de agua remanentes en el interior de la celda, se ralentiza debido a la generación de remolinos. Se obtienen entonces desviaciones significantes entre la salinidad real y aquella estimada. En cambio, a velocidades más altas del planeador (0.4 m/s) los procesos de mezcla se incrementan debido a la turbulencia e inestabilidades. En consecuencia, la respuesta del sensor CTD es mas rápida y las estimaciones de la salinidad mas precisas que en el caso anterior. Para completar el trabajo, los resultados numéricos se han validado con pruebas experimentales. Específicamente, se ha construido un modelo a escala del sensor CTD para obtener la confirmación experimental de los modelos numéricos. Haciendo uso del principio de similaridad de la dinámica que gobierna los fluidos incompresibles, los experimentos se han realizado con flujos de aire. Esto simplifica significativamente la puesta experimental y facilita su realización en condiciones con medios limitados. Las pruebas experimentales han confirmado cualitativamente los resultados numéricos. Más aun, se sugiere en esta Tesis que la respuesta del sensor CTD mejoraría significativamente añadiendo un generador de turbulencia en localizaciones adecuadas al interno de la celda de conductividad. ABSTRACT Recent technological developments allow the transition of observational oceanography from a ship-based to a networking concept. The latter suggests that the most efficient and effective way to observe the Ocean is through a fleet of spatially distributed autonomous platforms complemented by remote sensing. Due to their maneuverability, autonomy and endurance at sea, underwater gliders are already playing a significant role in this networking observational approach. Underwater gliders were specifically designed to sample vast areas of the Ocean. These are robots with a torpedo shape that make use of their hydrodynamic shape, wings and buoyancy changes to induce horizontal and vertical motions through the water column. A sensor to measure the conductivity, temperature and depth (CTD) is a standard payload of this platform. This is because certain ocean dynamic variables can be derived from temperature, depth and salinity. The latter can be inferred from measurements of temperature and conductivity. Integrating CTD sensors in glider platforms is not exempted of challenges. One of them, concerns to the accuracy of the salinity values derived from the sampled conductivity and temperature. Specifically, salinity estimates are significantly degraded by the thermal lag response existing between the measured temperature and the real temperature inside the conductivity cell of the sensor. This deficiency depends on the particularities of the inflow to the sensor, its geometry and, it has also been hypothesized, on the heat accumulated by the sensor coating layers. The effects of thermal lag are usually mitigated by controlling the inflow conditions through the sensor. Controlling inflow conditions is usually achieved by pumping the water through the sensor or by keeping constant and known its diving speed. Although pumping systems have been recently implemented in CTD sensors on board gliders, there are still platforms with unpumped CTDs. In the latter case, salinity estimates rely on assuming reasonable controlled and unperturbed flow conditions at the CTD sensor. This Thesis investigates the impact, if any, that glider hydrodynamics may have on the performance of onboard CTDs. Specifically, the location of the CTD sensor (external to the hull) relative to the boundary layer developed along the glider fuselage, is first investigated. This is done, initially, by applying a coupled inviscid-boundary layer model developed by the author, and later by using a commercial software for computational fluid dynamics (CFD). Results indicate, in both cases, that the CTD sensor is out of the boundary layer, being its inflow conditions those of the free stream. Still, the inflow speed to the CTD sensor is the speed of the platform, which largely depends on its hydrodynamic setup. For this reason, the research has been further extended to investigate the effect of the platform speed on the performance of the CTD sensor. A finite element model of the hydrodynamic and thermal behavior of the flow inside the CTD sensor, is developed for this purpose. Numerical results suggest that the thermal lag effect is mostly due to the interaction of the flow through the conductivity cell and its geometry. This interaction is different at different speeds of the glider. Specifically, at low glider speeds (0.2 m/s), the mixing of recent and old waters inside the conductivity cell is slowed down by the generation of coherent eddy structures. Significant departures between real and estimated values of the salinity are found. Instead, mixing is enhanced by turbulence and instabilities for high glider speeds (0.4 m/s). As a result, the thermal response of the CTD sensor is faster and the salinity estimates more accurate than for the low speed case. For completeness, numerical results have been validated against model tests. Specifically, a scaled model of the CTD sensor was built to obtain experimental confirmation of the numerical results. Making use of the similarity principle of the dynamics governing incompressible fluids, experiments are carried out with air flows. This significantly simplifies the experimental setup and facilitates its realization in a limited resource condition. Model tests qualitatively confirm the numerical findings. Moreover, it is suggested in this Thesis that the response of the CTD sensor would be significantly improved by adding small turbulators at adequate locations inside the conductivity cell.