12 resultados para HTLV-1 database
em Universidad Politécnica de Madrid
Resumo:
We describe a new online database, named HispaVeg, which currently holds data from 2663 vegetation plots of Spanish woodlands, scrublands and grasslands. Unlike other similar databases, a detailed description of the structure is stored with the floristic data of each plot (i.e., number and physiognomy of the vertical layers, cover values for each layer).Most of the vegetation plots are large rectangles (400 to 2000 square meters) with an average of 34 species per plot. The survey dates range from 1956 to present, with most of the records between 1964 and 1994. The elevation of the plots ranges from 0 to 2880, with most of the plots between 300 and 1500 m. HispaVeg is freely available to the scientific community. Users can query the online database, view printable reports for each plot and download spreadsheet-like raw data for subsets of vegetation plots.
Resumo:
Pinus pinaster is an economically and ecologically important species that is becoming a woody gymnosperm model. Its enormous genome size makes whole-genome sequencing approaches are hard to apply. Therefore, the expressed portion of the genome has to be characterised and the results and annotations have to be stored in dedicated databases.
Resumo:
Concurrency in Logic Programming has received much attention in the past. One problem with many proposals, when applied to Prolog, is that they involve large modifications to the standard implementations, and/or the communication and synchronization facilities provided do not fit as naturally within the language model as we feel is possible. In this paper we propose a new mechanism for implementing synchronization and communication for concurrency, based on atomic accesses to designated facts in the (shared) datábase. We argüe that this model is comparatively easy to implement and harmonizes better than previous proposals within the Prolog control model and standard set of built-ins. We show how in the proposed model it is easy to express classical concurrency algorithms and to subsume other mechanisms such as Linda, variable-based communication, or classical parallelism-oriented primitives. We also report on an implementation of the model and provide performance and resource consumption data.
Resumo:
Current development platforms for designing spoken dialog services feature different kinds of strategies to help designers build, test, and deploy their applications. In general, these platforms are made up of several assistants that handle the different design stages (e.g. definition of the dialog flow, prompt and grammar definition, database connection, or to debug and test the running of the application). In spite of all the advances in this area, in general the process of designing spoken-based dialog services is a time consuming task that needs to be accelerated. In this paper we describe a complete development platform that reduces the design time by using different types of acceleration strategies based on using information from the data model structure and database contents, as well as cumulative information obtained throughout the successive steps in the design. Thanks to these accelerations, the interaction with the platform is simplified and the design is reduced, in most cases, to simple confirmations to the “proposals” that the platform automatically provides at each stage. Different kinds of proposals are available to complete the application flow such as the possibility of selecting which information slots should be requested to the user together, predefined templates for common dialogs, the most probable actions that make up each state defined in the flow, different solutions to solve specific speech-modality problems such as the presentation of the lists of retrieved results after querying the backend database. The platform also includes accelerations for creating speech grammars and prompts, and the SQL queries for accessing the database at runtime. Finally, we will describe the setup and results obtained in a simultaneous summative, subjective and objective evaluations with different designers used to test the usability of the proposed accelerations as well as their contribution to reducing the design time and interaction.
Resumo:
In the School of Mines of the Technical University of Madrid (UPM) the first course of different degrees has been implemented and adapted to the European Higher Educational Area (EHEA). In all of the degrees there is a first semester course which gathers all the contents of basic mechanics: from the first kinematics concepts to the rigid solid plane motion Before the Bologna process took place, the authors had established the final assessment of the theoretical contents through open questions of theoretical-practical character In the present work, the elaboration of a wide database containing theoretical-practical questions that students can access on line is presented. The questions are divided in thirteen different questionnaires composed of a number of questions randomly chosen from a certain group in the database. Each group corresponds to a certain learning objective that the student knows. After answering the questionnaire and checking the grade assigned according to the performance of the student, the pupils can see the correct response displayed on the screen and widely explained by the professors. This represents a 10% of the final grade. As the student can access the questionnaires as many times as they want, the main goal is the self-assessment of each learning objective and therefore, getting the students involved in their own learning process so they can decide how much time they need to acquire the required level.
Resumo:
Research in stereoscopic 3D coding, transmission and subjective assessment methodology depends largely on the availability of source content that can be used in cross-lab evaluations. While several studies have already been presented using proprietary content, comparisons between the studies are difficult since discrepant contents are used. Therefore in this paper, a freely available dataset of high quality Full-HD stereoscopic sequences shot with a semiprofessional 3D camera is introduced in detail. The content was designed to be suited for usage in a wide variety of applications, including high quality studies. A set of depth maps was calculated from the stereoscopic pair. As an application example, a subjective assessment has been performed using coding and spatial degradations. The Absolute Category Rating with Hidden Reference method was used. The observers were instructed to vote on video quality only. Results of this experiment are also freely available and will be presented in this paper as a first step towards objective video quality measurement for 3DTV.
Resumo:
One of the most demanding needs in cloud computing is that of having scalable and highly available databases. One of the ways to attend these needs is to leverage the scalable replication techniques developed in the last decade. These techniques allow increasing both the availability and scalability of databases. Many replication protocols have been proposed during the last decade. The main research challenge was how to scale under the eager replication model, the one that provides consistency across replicas. In this paper, we examine three eager database replication systems available today: Middle-R, C-JDBC and MySQL Cluster using TPC-W benchmark. We analyze their architecture, replication protocols and compare the performance both in the absence of failures and when there are failures.
Resumo:
La diabetes mellitus es un trastorno en la metabolización de los carbohidratos, caracterizado por la nula o insuficiente segregación de insulina (hormona producida por el páncreas), como resultado del mal funcionamiento de la parte endocrina del páncreas, o de una creciente resistencia del organismo a esta hormona. Esto implica, que tras el proceso digestivo, los alimentos que ingerimos se transforman en otros compuestos químicos más pequeños mediante los tejidos exocrinos. La ausencia o poca efectividad de esta hormona polipéptida, no permite metabolizar los carbohidratos ingeridos provocando dos consecuencias: Aumento de la concentración de glucosa en sangre, ya que las células no pueden metabolizarla; consumo de ácidos grasos mediante el hígado, liberando cuerpos cetónicos para aportar la energía a las células. Esta situación expone al enfermo crónico, a una concentración de glucosa en sangre muy elevada, denominado hiperglucemia, la cual puede producir a medio o largo múltiples problemas médicos: oftalmológicos, renales, cardiovasculares, cerebrovasculares, neurológicos… La diabetes representa un gran problema de salud pública y es la enfermedad más común en los países desarrollados por varios factores como la obesidad, la vida sedentaria, que facilitan la aparición de esta enfermedad. Mediante el presente proyecto trabajaremos con los datos de experimentación clínica de pacientes con diabetes de tipo 1, enfermedad autoinmune en la que son destruidas las células beta del páncreas (productoras de insulina) resultando necesaria la administración de insulina exógena. Dicho esto, el paciente con diabetes tipo 1 deberá seguir un tratamiento con insulina administrada por la vía subcutánea, adaptado a sus necesidades metabólicas y a sus hábitos de vida. Para abordar esta situación de regulación del control metabólico del enfermo, mediante una terapia de insulina, no serviremos del proyecto “Páncreas Endocrino Artificial” (PEA), el cual consta de una bomba de infusión de insulina, un sensor continuo de glucosa, y un algoritmo de control en lazo cerrado. El objetivo principal del PEA es aportar al paciente precisión, eficacia y seguridad en cuanto a la normalización del control glucémico y reducción del riesgo de hipoglucemias. El PEA se instala mediante vía subcutánea, por lo que, el retardo introducido por la acción de la insulina, el retardo de la medida de glucosa, así como los errores introducidos por los sensores continuos de glucosa cuando, se descalibran dificultando el empleo de un algoritmo de control. Llegados a este punto debemos modelar la glucosa del paciente mediante sistemas predictivos. Un modelo, es todo aquel elemento que nos permita predecir el comportamiento de un sistema mediante la introducción de variables de entrada. De este modo lo que conseguimos, es una predicción de los estados futuros en los que se puede encontrar la glucosa del paciente, sirviéndonos de variables de entrada de insulina, ingesta y glucosa ya conocidas, por ser las sucedidas con anterioridad en el tiempo. Cuando empleamos el predictor de glucosa, utilizando parámetros obtenidos en tiempo real, el controlador es capaz de indicar el nivel futuro de la glucosa para la toma de decisones del controlador CL. Los predictores que se están empleando actualmente en el PEA no están funcionando correctamente por la cantidad de información y variables que debe de manejar. Data Mining, también referenciado como Descubrimiento del Conocimiento en Bases de Datos (Knowledge Discovery in Databases o KDD), ha sido definida como el proceso de extracción no trivial de información implícita, previamente desconocida y potencialmente útil. Todo ello, sirviéndonos las siguientes fases del proceso de extracción del conocimiento: selección de datos, pre-procesado, transformación, minería de datos, interpretación de los resultados, evaluación y obtención del conocimiento. Con todo este proceso buscamos generar un único modelo insulina glucosa que se ajuste de forma individual a cada paciente y sea capaz, al mismo tiempo, de predecir los estados futuros glucosa con cálculos en tiempo real, a través de unos parámetros introducidos. Este trabajo busca extraer la información contenida en una base de datos de pacientes diabéticos tipo 1 obtenidos a partir de la experimentación clínica. Para ello emplearemos técnicas de Data Mining. Para la consecución del objetivo implícito a este proyecto hemos procedido a implementar una interfaz gráfica que nos guía a través del proceso del KDD (con información gráfica y estadística) de cada punto del proceso. En lo que respecta a la parte de la minería de datos, nos hemos servido de la denominada herramienta de WEKA, en la que a través de Java controlamos todas sus funciones, para implementarlas por medio del programa creado. Otorgando finalmente, una mayor potencialidad al proyecto con la posibilidad de implementar el servicio de los dispositivos Android por la potencial capacidad de portar el código. Mediante estos dispositivos y lo expuesto en el proyecto se podrían implementar o incluso crear nuevas aplicaciones novedosas y muy útiles para este campo. Como conclusión del proyecto, y tras un exhaustivo análisis de los resultados obtenidos, podemos apreciar como logramos obtener el modelo insulina-glucosa de cada paciente. ABSTRACT. The diabetes mellitus is a metabolic disorder, characterized by the low or none insulin production (a hormone produced by the pancreas), as a result of the malfunctioning of the endocrine pancreas part or by an increasing resistance of the organism to this hormone. This implies that, after the digestive process, the food we consume is transformed into smaller chemical compounds, through the exocrine tissues. The absence or limited effectiveness of this polypeptide hormone, does not allow to metabolize the ingested carbohydrates provoking two consequences: Increase of the glucose concentration in blood, as the cells are unable to metabolize it; fatty acid intake through the liver, releasing ketone bodies to provide energy to the cells. This situation exposes the chronic patient to high blood glucose levels, named hyperglycemia, which may cause in the medium or long term multiple medical problems: ophthalmological, renal, cardiovascular, cerebrum-vascular, neurological … The diabetes represents a great public health problem and is the most common disease in the developed countries, by several factors such as the obesity or sedentary life, which facilitate the appearance of this disease. Through this project we will work with clinical experimentation data of patients with diabetes of type 1, autoimmune disease in which beta cells of the pancreas (producers of insulin) are destroyed resulting necessary the exogenous insulin administration. That said, the patient with diabetes type 1 will have to follow a treatment with insulin, administered by the subcutaneous route, adapted to his metabolic needs and to his life habits. To deal with this situation of metabolic control regulation of the patient, through an insulin therapy, we shall be using the “Endocrine Artificial Pancreas " (PEA), which consists of a bomb of insulin infusion, a constant glucose sensor, and a control algorithm in closed bow. The principal aim of the PEA is providing the patient precision, efficiency and safety regarding the normalization of the glycemic control and hypoglycemia risk reduction". The PEA establishes through subcutaneous route, consequently, the delay introduced by the insulin action, the delay of the glucose measure, as well as the mistakes introduced by the constant glucose sensors when, decalibrate, impede the employment of an algorithm of control. At this stage we must shape the patient glucose levels through predictive systems. A model is all that element or set of elements which will allow us to predict the behavior of a system by introducing input variables. Thus what we obtain, is a prediction of the future stages in which it is possible to find the patient glucose level, being served of input insulin, ingestion and glucose variables already known, for being the ones happened previously in the time. When we use the glucose predictor, using obtained real time parameters, the controller is capable of indicating the future level of the glucose for the decision capture CL controller. The predictors that are being used nowadays in the PEA are not working correctly for the amount of information and variables that it need to handle. Data Mining, also indexed as Knowledge Discovery in Databases or KDD, has been defined as the not trivial extraction process of implicit information, previously unknown and potentially useful. All this, using the following phases of the knowledge extraction process: selection of information, pre- processing, transformation, data mining, results interpretation, evaluation and knowledge acquisition. With all this process we seek to generate the unique insulin glucose model that adjusts individually and in a personalized way for each patient form and being capable, at the same time, of predicting the future conditions with real time calculations, across few input parameters. This project of end of grade seeks to extract the information contained in a database of type 1 diabetics patients, obtained from clinical experimentation. For it, we will use technologies of Data Mining. For the attainment of the aim implicit to this project we have proceeded to implement a graphical interface that will guide us across the process of the KDD (with graphical and statistical information) of every point of the process. Regarding the data mining part, we have been served by a tool called WEKA's tool called, in which across Java, we control all of its functions to implement them by means of the created program. Finally granting a higher potential to the project with the possibility of implementing the service for Android devices, porting the code. Through these devices and what has been exposed in the project they might help or even create new and very useful applications for this field. As a conclusion of the project, and after an exhaustive analysis of the obtained results, we can show how we achieve to obtain the insulin–glucose model for each patient.
Resumo:
One of the most demanding needs in cloud computing and big data is that of having scalable and highly available databases. One of the ways to attend these needs is to leverage the scalable replication techniques developed in the last decade. These techniques allow increasing both the availability and scalability of databases. Many replication protocols have been proposed during the last decade. The main research challenge was how to scale under the eager replication model, the one that provides consistency across replicas. This thesis provides an in depth study of three eager database replication systems based on relational systems: Middle-R, C-JDBC and MySQL Cluster and three systems based on In-Memory Data Grids: JBoss Data Grid, Oracle Coherence and Terracotta Ehcache. Thesis explore these systems based on their architecture, replication protocols, fault tolerance and various other functionalities. It also provides experimental analysis of these systems using state-of-the art benchmarks: TPC-C and TPC-W (for relational systems) and Yahoo! Cloud Serving Benchmark (In- Memory Data Grids). Thesis also discusses three Graph Databases, Neo4j, Titan and Sparksee based on their architecture and transactional capabilities and highlights the weaker transactional consistencies provided by these systems. It discusses an implementation of snapshot isolation in Neo4j graph database to provide stronger isolation guarantees for transactions.
Resumo:
Esta Tesis se centra en el desarrollo de un método para la reconstrucción de bases de datos experimentales incompletas de más de dos dimensiones. Como idea general, consiste en la aplicación iterativa de la descomposición en valores singulares de alto orden sobre la base de datos incompleta. Este nuevo método se inspira en el que ha servido de base para la reconstrucción de huecos en bases de datos bidimensionales inventado por Everson y Sirovich (1995) que a su vez, ha sido mejorado por Beckers y Rixen (2003) y simultáneamente por Venturi y Karniadakis (2004). Además, se ha previsto la adaptación de este nuevo método para tratar el posible ruido característico de bases de datos experimentales y a su vez, bases de datos estructuradas cuya información no forma un hiperrectángulo perfecto. Se usará una base de datos tridimensional de muestra como modelo, obtenida a través de una función transcendental, para calibrar e ilustrar el método. A continuación se detalla un exhaustivo estudio del funcionamiento del método y sus variantes para distintas bases de datos aerodinámicas. En concreto, se usarán tres bases de datos tridimensionales que contienen la distribución de presiones sobre un ala. Una se ha generado a través de un método semi-analítico con la intención de estudiar distintos tipos de discretizaciones espaciales. El resto resultan de dos modelos numéricos calculados en C F D . Por último, el método se aplica a una base de datos experimental de más de tres dimensiones que contiene la medida de fuerzas de una configuración ala de Prandtl obtenida de una campaña de ensayos en túnel de viento, donde se estudiaba un amplio espacio de parámetros geométricos de la configuración que como resultado ha generado una base de datos donde la información está dispersa. ABSTRACT A method based on an iterative application of high order singular value decomposition is derived for the reconstruction of missing data in multidimensional databases. The method is inspired by a seminal gappy reconstruction method for two-dimensional databases invented by Everson and Sirovich (1995) and improved by Beckers and Rixen (2003) and Venturi and Karniadakis (2004). In addition, the method is adapted to treat both noisy and structured-but-nonrectangular databases. The method is calibrated and illustrated using a three-dimensional toy model database that is obtained by discretizing a transcendental function. The performance of the method is tested on three aerodynamic databases for the flow past a wing, one obtained by a semi-analytical method, and two resulting from computational fluid dynamics. The method is finally applied to an experimental database consisting in a non-exhaustive parameter space measurement of forces for a box-wing configuration.
Resumo:
Esta Tesis presenta un nuevo método para filtrar errores en bases de datos multidimensionales. Este método no precisa ninguna información a priori sobre la naturaleza de los errores. En concreto, los errrores no deben ser necesariamente pequeños, ni de distribución aleatoria ni tener media cero. El único requerimiento es que no estén correlados con la información limpia propia de la base de datos. Este nuevo método se basa en una extensión mejorada del método básico de reconstrucción de huecos (capaz de reconstruir la información que falta de una base de datos multidimensional en posiciones conocidas) inventado por Everson y Sirovich (1995). El método de reconstrucción de huecos mejorado ha evolucionado como un método de filtrado de errores de dos pasos: en primer lugar, (a) identifica las posiciones en la base de datos afectadas por los errores y después, (b) reconstruye la información en dichas posiciones tratando la información de éstas como información desconocida. El método resultante filtra errores O(1) de forma eficiente, tanto si son errores aleatorios como sistemáticos e incluso si su distribución en la base de datos está concentrada o esparcida por ella. Primero, se ilustra el funcionamiento delmétodo con una base de datosmodelo bidimensional, que resulta de la dicretización de una función transcendental. Posteriormente, se presentan algunos casos prácticos de aplicación del método a dos bases de datos tridimensionales aerodinámicas que contienen la distribución de presiones sobre un ala a varios ángulos de ataque. Estas bases de datos resultan de modelos numéricos calculados en CFD. ABSTRACT A method is presented to filter errors out in multidimensional databases. The method does not require any a priori information about the nature the errors. In particular, the errors need not to be small, neither random, nor exhibit zero mean. Instead, they are only required to be relatively uncorrelated to the clean information contained in the database. The method is based on an improved extension of a seminal iterative gappy reconstruction method (able to reconstruct lost information at known positions in the database) due to Everson and Sirovich (1995). The improved gappy reconstruction method is evolved as an error filtering method in two steps, since it is adapted to first (a) identify the error locations in the database and then (b) reconstruct the information in these locations by treating the associated data as gappy data. The resultingmethod filters out O(1) errors in an efficient fashion, both when these are random and when they are systematic, and also both when they concentrated and when they are spread along the database. The performance of the method is first illustrated using a two-dimensional toymodel database resulting fromdiscretizing a transcendental function and then tested on two CFD-calculated, three-dimensional aerodynamic databases containing the pressure coefficient on the surface of a wing for varying values of the angle of attack. A more general performance analysis of the method is presented with the intention of quantifying the randomness factor the method admits maintaining a correct performance and secondly, quantifying the size of error the method can detect. Lastly, some improvements of the method are proposed with their respective verification.