1 resultado para HONEY-BEES
em Universidad Politécnica de Madrid
Filtro por publicador
- Aberdeen University (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (4)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (34)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (14)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (46)
- Brock University, Canada (15)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Cambridge University Engineering Department Publications Database (2)
- CentAUR: Central Archive University of Reading - UK (70)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (6)
- Cochin University of Science & Technology (CUSAT), India (4)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (1)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (21)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (4)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (3)
- Indian Institute of Science - Bangalore - Índia (12)
- Instituto Politécnico do Porto, Portugal (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Ministerio de Cultura, Spain (54)
- National Center for Biotechnology Information - NCBI (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (41)
- Queensland University of Technology - ePrints Archive (38)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (386)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (8)
- Universidade Federal do Rio Grande do Norte (UFRN) (8)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (2)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (2)
- University of Michigan (102)
- University of Queensland eSpace - Australia (9)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (2)
Resumo:
In this paper, we propose the distributed bees algorithm (DBA) for task allocation in a swarm of robots. In the proposed scenario, task allocation consists in assigning the robots to the found targets in a 2-D arena. The expected distribution is obtained from the targets' qualities that are represented as scalar values. Decision-making mechanism is distributed and robots autonomously choose their assignments taking into account targets' qualities and distances. We tested the scalability of the proposed DBA algorithm in terms of number of robots and number of targets. For that, the experiments were performed in the simulator for various sets of parameters, including number of robots, number of targets, and targets' utilities. Control parameters inherent to DBA were tuned to test how they affect the final robot distribution. The simulation results show that by increasing the robot swarm size, the distribution error decreased.