9 resultados para HIGH-ALTITUDE EXPOSURE
em Universidad Politécnica de Madrid
Resumo:
In this work, the capacity and the interference statistics of the uplink of high-altitude platforms (HAPs) for asynchronous and synchronous WCDMA system assuming finite transmission power and imperfect power control are studied. Propagation loss used to calculate the received signal power is due to the distance, shadowing, and wall insertion loss. The uplink capacity for 3- and 3.75-G services is given for different cell radius assuming outdoor and indoor voice users only, data users only and a combination of the two services. For 37 macrocells HAP, the total uplink capacity is 3,034 outdoor voice users or 444 outdoor data users. When one or more than one user is an indoor user, the uplink capacity is 2,923 voice users or 444 data users when the walls entry loss is 10 dB. It is shown that the effect of the adjacent channels interference is very small.
Resumo:
A menudo, la fase del vuelo en ruta sobre áreas de baja densidad de tráfico, se desarrollan en espacios aéreos de alta cota, en los que el servicio de vigilancia es deficiente o simplemente no existente. En este tipo de espacio aéreo garantizar las separaciones entre aeronaves desde el segmento terrestre requiere de procedimientos adecuados a los medios disponibles y que, en general, desembocan en la utilización de unas mínimas de separación muy grandes. En este tipo de espacio aéreo, se ha planteado desde distintos organismos la posibilidad de delegar la responsabilidad de la separación a la aeronave, desarrollando ésta las funciones necesarias para poder asumir tal responsabilidad sin disminuir los umbrales de seguridad. Para que la aeronave pueda asumir la responsabilidad de la separación es necesario dotar a las tripulaciones de nuevos medios técnicos y procedimientos operacionales, los cuales trabajando de forma continua y automática permitan el desarrollo seguro del vuelo en esas circunstancias. El planteamiento de algunos de estos sistemas embarcados así como su validación desde el punto de vista de su aceptación por las tripulaciones es el objetivo del trabajo de investigación realizado y cuyos resultados se presentan en esta tesis. El sistema que se propone trata de resolver los riesgos con los tráficos circundantes garantizando la auto‐separación en vuelo de crucero, evitando y resolviendo conflictos. La aeronave que detecta un riesgo/conflicto negocia una propuesta de solución con la aeronave “intrusa”, una vez la propuesta ha sido negociada, el piloto confirma la maniobra a realizar por la aeronave, la aeronave radiodifunde un mensaje con las intenciones de la maniobra, seguidamente el piloto automático maniobra el avión para implementar la solución y el director de vuelo muestra al piloto la maniobra que se está realizando. ABSTRACT The flight in route phase over areas of low traffic density is usually performed in high altitude airspace, in which the surveillance system is deficient or simply nonexistent. In this type of airspace, to guarantee the separation between aircrafts from the ground, adequate procedures are required to be used with the available systems, and this generally leads to the use of high separation minima. Also, in this type of airspace, it has been discussed by several organizations the possibility of delegating the responsibility of the aircraft separation to the aircraft itself, it carrying out the necessary functions to take on such responsibility without lowering the safety threshold. In order for the aircraft to take on the responsibility of the separation, it is necessary to provide the crew with new technical means and operational procedures, which will result in safe flight under those circumstances. The discussion of some of these systems and their validation from the point of view of acceptance by the crews is the objective of this achieved research work, the findings of which are presented here. The proposed system assists in the surveillance providing the autopilot with information to guarantee the self‐separation with the surrounding in flight traffic, avoiding and solving conflicts. The aircraft which detects the risk/conflict starts a negotiation with the intruder aircraft for finding a conflict resolution, then the pilot of the aircraft approves the solution maneuver and the aircraft broadcasts a message with the maneuver which will be executed. The autopilot maneuvers the aircraft to execute the solution, the evolution of which is shown in the proposed system display and the flight director.
Resumo:
The approach developed by Fuhrer in 1995 to estimate wheat yield losses induced by ozone and modulated by the soil water content (SWC) was applied to the data on Catalonian wheat yields. The aim of our work was to apply this approach and adjust it to Mediterranean environmental conditions by means of the necessary corrections. The main objective pursued was to prove the importance of soil water availability in the estimation of relative wheat yield losses as a factor that modifies the effects of tropospheric ozone on wheat, and to develop the algorithms required for the estimation of relative yield losses, adapted to the Mediterranean environmental conditions. The results show that this is an easy way to estimate relative yield losses just using meteorological data, without using ozone fluxes, which are much more difficult to calculate. Soil water availability is very important as a modulating factor of the effects of ozone on wheat; when soil water availability decreases, almost twice the amount of accumulated exposure to ozone is required to induce the same percentage of yield loss as in years when soil water availability is high.
Resumo:
Ozone (O3) phytototoxicity has been reported on a wide range of crops and wild Central European plantspecies, however no information has been provided regarding the sensitivity of plantspecies from dehesa Mediterranean therophytic grasslands in spite of their great plantspecies richness and the high O3 levels that are recorded in this area. A study was carried out in open-top chambers (OTCs) to assess the effects of O3 and competition on the reproductiveability of threecloverspecies: Trifolium cherleri, Trifolium subterraneum and Trifolium striatum. A phytometer approach was followed, therefore plants of these species were grown in mesoscosms composed of monocultures of four plants of each species, of threeplants of each species competing against a Briza maxima individual or of a single plant of each cloverspecies competing with threeB. maximaplants. Three O3 treatments were adopted: charcoal filtered air (CFA), non-filtered air (NFA) and non-filtered air supplemented with 40 nl l−1 of O3 (NFA+). The different mesocosms were exposed to the different O3 treatments for 45 days and then they remained in the open. Ozoneexposure caused reductions in the flower biomass of the threecloverspecies assessed. In the case of T. cherleri and T. subterraneum this effect was found following their exposure to the different O3 treatments during their vegetative period. An attenuation of these effects was found when the plants remained in the open. Ozone-induced detrimental effects on the seed output of T. striatum were also observed. The flower biomass of the cloverplants grown in monocultures was greater than when competing with one or threeB. maxima individuals. An increased flower biomass was found in the CFA monoculture mesocosms of T. cherleri when compared with the remaining mesocosms, once the plants were exposed in the open for 60 days. The implications of these effects on the performance of dehesa acid grasslands and for the definition of O3 critical levels is discussed
Resumo:
Desde la aparición del turborreactor, el motor aeróbico con turbomaquinaria ha demostrado unas prestaciones excepcionales en los regímenes subsónico y supersónico bajo. No obstante, la operación a velocidades superiores requiere sistemas más complejos y pesados, lo cual ha imposibilitado la ejecución de estos conceptos. Los recientes avances tecnológicos, especialmente en materiales ligeros, han restablecido el interés por los motores de ciclo combinado. La simulación numérica de estos nuevos conceptos es esencial para estimar las prestaciones de la planta propulsiva, así como para abordar las dificultades de integración entre célula y motor durante las primeras etapas de diseño. Al mismo tiempo, la evaluación de estos extraordinarios motores requiere una metodología de análisis distinta. La tesis doctoral versa sobre el diseño y el análisis de los mencionados conceptos propulsivos mediante el modelado numérico y la simulación dinámica con herramientas de vanguardia. Las distintas arquitecturas presentadas por los ciclos combinados basados en sendos turborreactor y motor cohete, así como los diversos sistemas comprendidos en cada uno de ellos, hacen necesario establecer una referencia común para su evaluación. Es más, la tendencia actual hacia aeronaves "más eléctricas" requiere una nueva métrica para juzgar la aptitud de un proceso de generación de empuje en el que coexisten diversas formas de energía. A este respecto, la combinación del Primer y Segundo Principios define, en un marco de referencia absoluto, la calidad de la trasferencia de energía entre los diferentes sistemas. Esta idea, que se ha estado empleando desde hace mucho tiempo en el análisis de plantas de potencia terrestres, ha sido extendida para relacionar la misión de la aeronave con la ineficiencia de cada proceso involucrado en la generación de empuje. La metodología se ilustra mediante el estudio del motor de ciclo combinado variable de una aeronave para el crucero a Mach 5. El diseño de un acelerador de ciclo combinado basado en el turborreactor sirve para subrayar la importancia de la integración del motor y la célula. El diseño está limitado por la trayectoria ascensional y el espacio disponible en la aeronave de crucero supersónico. Posteriormente se calculan las prestaciones instaladas de la planta propulsiva en función de la velocidad y la altitud de vuelo y los parámetros de control del motor: relación de compresión, relación aire/combustible y área de garganta. ABSTRACT Since the advent of the turbojet, the air-breathing engine with rotating machinery has demonstrated exceptional performance in the subsonic and low supersonic regimes. However, the operation at higher speeds requires further system complexity and weight, which so far has impeded the realization of these concepts. Recent technology developments, especially in lightweight materials, have restored the interest towards combined-cycle engines. The numerical simulation of these new concepts is essential at the early design stages to compute a first estimate of the engine performance in addition to addressing airframe-engine integration issues. In parallel, a different analysis methodology is required to evaluate these unconventional engines. The doctoral thesis concerns the design and analysis of the aforementioned engine concepts by means of numerical modeling and dynamic simulation with state-of-the-art tools. A common reference is needed to evaluate the different architectures of the turbine and the rocket-based combined-cycle engines as well as the various systems within each one of them. Furthermore, the actual trend towards more electric aircraft necessitates a common metric to judge the suitability of a thrust generation process where different forms of energy coexist. In line with this, the combination of the First and the Second Laws yields the quality of the energy being transferred between the systems on an absolute reference frame. This idea, which has been since long applied to the analysis of on-ground power plants, was extended here to relate the aircraft mission with the inefficiency of every process related to the thrust generation. The methodology is illustrated with the study of a variable- combined-cycle engine for a Mach 5 cruise aircraft. The design of a turbine-based combined-cycle booster serves to highlight the importance of the engine-airframe integration. The design is constrained by the ascent trajectory and the allocated space in the supersonic cruise aircraft. The installed performance of the propulsive plant is then computed as a function of the flight speed and altitude and the engine control parameters: pressure ratio, air-to-fuel ratio and throat area.
Resumo:
A bare tether with thin-tape cross section is both i) the most effective electrodinamic tether for given length and mass, and ii) capable of effective design for an arbitrary mission through its three disparate dimensions. It handily beats the fully insulated tether that exchanges current at both ends, a result resting in advantages of 2D current collection as against 3D collection; it has much greater perimeter than the round bare tether and much lower fatal debris-impact rate, leading to greatly faster de-orbiting and greatly higher probability of survival; and it only allows multi-line tethers reaching a few hundred lines to stand competitive. In selecting the disparate values of length L, width w, and thickness h for a de-orbit mission, performance involves three criteria: a) tether-tospacecraft mass ratio must be small; b) probability of survival against the debris environment must be high; and c) de-orbiting must be fast to reduce manoeuvres for avoiding catastrophic collisions with big active/passive satellites around. Beyond determining tether mass through the product Lwh, main dimension parameters affecting performance are L/h2li characterizing ohmic effects, and w determining electron collection. An algorithm for optimal selection of tape dimensions is elaborated.
Radar track segmentation with cubic splines for collision risk models in high density terminal areas
Resumo:
This paper presents a method to segment airplane radar tracks in high density terminal areas where the air traffic follows trajectories with several changes in heading, speed and altitude. The radar tracks are modelled with different types of segments, straight lines, cubic spline function and shape preserving cubic function. The longitudinal, lateral and vertical deviations are calculated for terminal manoeuvring area scenarios. The most promising model of the radar tracks resulted from a mixed interpolation using straight lines for linear segments and spline cubic functions for curved segments. A sensitivity analysis is used to optimise the size of the window for the segmentation process.
Resumo:
In electric vehicles, passengers sit very close to an electric system of significant power. The high currents achieved in these vehicles mean that the passengers could be exposed to significant magnetic fields. One of the electric devices present in the power train are the batteries. In this paper, a methodology to evaluate the magnetic field created by these batteries is presented. First, the magnetic field generated by a single battery is analyzed using finite elements simulations. Results are compared to laboratory measurements, taken from a real battery, in order to validate the model. After this, the magnetic field created by a complete battery pack is estimated and results are discussed.
Resumo:
This study was designed to determine the effect of temperature on the mechanical strength (in both in vivo and post-exposure trials) of two alkaline cements (without OPC): (a) 100% fly ash (FA) and (b) 85% FA + 15% bauxite, the activated alkaline solution used was 85% 10-M NaOH + 15% sodium silicate. A Type I 42.5 R Portland cement was used as a control. Two series of trials were conducted: (i) in vivo trials in which bending and compressive strength, fracture toughness and modulus of elasticity were determined at different temperatures; and (ii) post-firing trials, assessing residual bending and compres-sive strength after a 1-h exposure to high temperatures and subsequent cooling. The findings showed that from 25 to 600 C, irrespective of the type of test (in vivo or post-firing), compressive mechanical strength rose, with the specimens exhibiting elastic behaviour and consequently brittle failure. At tem-peratures of over 600 C, behaviour differed depending on the type of test: (i) in the in vivo trials the high temperature induced pseudo-plastic strain and a decline in mechanical strength that did not necessarily entail specimen failure; (ii) in the post-firing trials, compressive strength rose.