22 resultados para Guarani aquifer

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology is described for understanding the interaction of karstic aquifers with allogenic rivers, where little information is available. This methodology includes conventional hydrogen- ology methods tracer tests and measurements of flow into, out of and circulating within the karstic system. The method is designed to un- derstand the hydrogeological behaviour of a river in sufficient detail, given a short study pe- riod. The methodology is applied to a karstic system in Spain, obtaining useful, quantitative results for a hydrological year, such as an esti- mate of the water balance, differentiation be- tween autogenic and allogenic natural recharge, relationship and connection between the river and the aquifer, and measurements of infiltration capacity in watercourses under different hydro- logical situations. The paper deals with a useful example that could be applied to other rivers and aquifers where few data are available. It can be applied to aquifers under a natural regime and Mediterranean climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se cuantifican las descargas subterráneas de un acuífero a un río que lo atraviesa utilizando correlaciones estadísticas. El río Duero, España, incrementa su caudal base en varios m3/s, al atravesar unos afloramientos carbonatados mesozoicos en un pequeño tramo de su cabecera; esto es de especial importancia en época de estiaje, cuando la mayor parte del caudal base del río procede de manantiales que allí se sitúan. Dichos afloramientos corresponden a uno de los dos acuíferos calcáreos confinados, que se desarrollan en paralelo y están hidráulicamente desconectados por una capa impermeable, que forman el sistema acuífero de los manantiales de Gormaz. Este sistema se encuentra en estado de régimen natural y está apenas explotado. Se define el modelo conceptual de funcionamiento hidrogeológico, considerando el papel hidrogeológico de la falla de Gormaz, situada en la zona de descarga del sistema. Analizando información geológica antecedente y la geofísica exploratoria realizada, se obtuvo un mejor conocimiento de la geometría y los límites de los acuíferos, definiéndose un sistema acuífero con una zona de recarga en el sur, correspondiente a los afloramientos calcáreos, los cuales se confinan hacia el norte bajo el Terciario, hasta intersecar con la falla normal de Gormaz. El salto de falla genera una barrera para las formaciones permeables situadas al extremo norte (margen derecha del río Duero); a su vez, el plano de falla facilita el ascenso del agua subterránea del sistema acuífero en estudio y pone en conexión hidráulica los dos acuíferos. Se estimaron, además, los parámetros hidráulicos de los acuíferos en los alrededores de la falla. La buena correlación entre los niveles piezométricos y las descargas subterráneas al río Duero han permitido la reconstrucción del hidrograma de los manantiales de Gormaz en el periodo 1992-2006. Se calcula así que la contribución subterránea al río Duero es de 135.9 hm3/año, que supone el 18.9% de la aportación total del río. In a short stretch of its headwaters, the base flow of the River Duero increases by several m3/s as it traverses some Mesozoic carbonate outcrops. This is of special importance during the dry season, when the majority of the base flow of the river proceeds from springs in this reach. The outcrops correspond to one of two confined calcareous aquifers that developed in parallel but which are not hydraulically connected because of an impermeable layer. Together, they constitute the aquifer system of the Gormaz Springs. The system is still in its natural regime and is hardly exploited. This study defines the conceptual model of hydrogeological functioning, taking into consideration the role of the Gormaz Fault, which is situated in the discharge zone of the system. Analysis of both antecedent geological information and geophysical explorations has led to a better understanding of the geometry and boundaries of the aquifers, defining an aquifer system with a recharge zone in the south corresponding to in the calcareous outcrops. These calcareous outcrops are confined to the north below Tertiary formations, as far as their intersection with the normal fault of Gormaz. The throw of the fault forms the barrier of the permeable formations situated in the extreme north (right bank of the River Duero). In turn, the fault plane facilitates the upflow of groundwater from the aquifer system and creates hydraulic connection between the two aquifers. In addition, the study estimated the hydraulic parameters of the aquifer around the fault. The close correlation between piezometric levels and the groundwater discharges to the River Duero has enabled the reconstruction of the hydrogram of Gormaz springs over the period 1992-2006. By this means, it is calculated that the groundwater contribution to the River Duero is 135.9 hm3/year, or 18.9% of the total river inflow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spain is the fifth-largest producer of melon (Cucumis melo L.) and the second exporter in the world. To a national level, Castilla-La Mancha emphasize and, specifically, Ciudad Real, where is cultivated 27% of national area dedicated to this crop and 30% of melon national production. Melon crop is cultivating majority in Ciudad Real and it is mainly located in the Alto Guadiana, where the major aquifers of the region are located, the aquifer 23 or Mancha Occidental and the aquifer 24 or Campo de Montiel, both declared overexploited and vulnerable zones to nitrate pollution from agricultural sources. The problem is exacerbated because in this area, groundwater is the basic resource of supply to populations, and even often the only one. Given the importance of melon in the area, recent research has focused on the irrigation of melon crop. Unfortunately, scant information has been forthcoming on the effect of N fertilizer on melon piel de sapo crop, so it is very important to tackle in a serious study that lead to know the N requirements on the melon crop melon by reducing the risks of contamination by nitrate leaching without affecting productivity and crop quality. In fact, the recommended dose is often subjective and practice is a N overdose. In this situation, the taking of urgent measures to optimize the use of N fertilization is required. To do it, the effect of N in a melon crop, fertirrigated and on plastic mulch, was studied. The treatments consisted in different rates of N supply, considering N fertilizer and N content in irrigation water, so the treatment applied were: 30 (N30), 85 (N85), 112 (N112) and 139 (N139) Kg N ha-1 in 2005; 93 (N93), 243 (N243) and 393 (N393) kg ha-1 in 2006; and 11 (N11), 61 (N61), 95 (N95) and 148 (N148) kg ha-1 in 2007. A randomized complete-block design was used and each treatment was replicated four times. The results showed a significant effect of N on dry biomass and two patterns of growth were observed. On the one hand, a gradual increase in vegetative biomass of the plant, leaves and stem, with increasing N, and on the other hand, an increase of fruit biomass also with increasing N up to a maximum of biomass corresponding to the optimal dose determined in 90 kg ha-1 of N applied, corresponding to 160 kg ha-1 of N available for melon crop, since this optimum dose, the fruit biomass suffers a decline. A significant effect was observed in concentration and N uptake in leaf, steam, fruit and whole plant, increasing in all of them with increasing of N doses. Fast N uptake occurred from 30-35 to 70-80 days after transplanting, coinciding with the fruit development. The N had a clear influence on the melon yield, its components, skin thickness and flesh ratio. The melon yield increased, as the mean fruit weight and number of fruits per m2 with increasing N until achieve an above 95% of the maximum yield when the N applied is 90 kg ha-1 or 160 kg ha-1 of N available. When N exceeds the optimal amount, there is a decline in yield, reducing the mean fruit weight and number of fruits per square meter, and was also observed a decrease in fruit quality by increasing the skin thickness and decrease the flesh ratio, which means an increase in fruit hollowed with excessive N doses. There was a trend for all indexes of N use efficiency (NUE) to decline with increasing N rate. We observed two different behaviours in the calculation result of the NUE; on the one hand, all the efficiency indexes calculated with N applied and N available had an exponential trend, and on the other hand, all the efficiency indexes calculated with N uptake has a linear trend. The linear regression cuts the exponential curve, delimiting a range within which lies the optimum quantity of N. The N leaching as nitrates increased exponentially with the amount of N. The increase of N doses was affected on the N mineralization. There was a negative exponential effect of N available on the mineralization of this element that occurs in the soil during the growing season, calculated from the balances of this element. The study of N leaching for each N rate used, allowed to us to establish several environmental indices related to environmental risk that causes the use of such doses, a simple way for them to be included in the code of Best Management Practices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geological storage of CO2 is nowadays internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize its effects on the global climatology. One of the main options is to store the CO2 in deep saline aquifers at more than 800 m depth, because it achieves its supercritical state. Among the most important aspects concerning the performance assessment of a deep CO2 geological repository is the evaluation of the CO2 leakage rate from the chosen storage geological formation. Therefore, it is absolutely necessary to increase the knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths for CO2 and the physico-mechanical resistance of the sealing formation. Furthermore, the quantification of the CO2 leakage rate is essential to evaluate its effects on the environment. One way to achieve this objective is to study of CO2 leakage on natural analogue systems, because they can provide useful information about the natural performance of the CO2, which can be applied to an artificial CO2 geological storage. This work is focused on the retention capacity of the cap-rock by measuring the diffuse soil CO2 flux in a site selected based on: i) the presence of a natural and deep CO2 accumulation; ii) its structural geological characteristics; and iii) the nature of the cap-rocks. This site is located in the so-called Mazarrón-Gañuelas Tertiary Basin, in the Guadalentin Valley, province of Murcia (Spain) Therefore the main objective of this investigation has been to detect the possible leakages of CO2 from a deep saline aquifer to the surface in order to understand the capability of this area as a natural analogue for Carbon Capture and Sequestration (CCS). The results obtained allow to conclude that the geological sealing formation of the basin seems to be appropriate to avoid CO2 leakages from the storage formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geological storage of CO2 is nowadays internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize its effects on the global climatology. One of the main options is to store CO2 in deep saline aquifers at more than 800m depth, because it reaches its supercritical state. Study of the CO2 natural accumulations as natural analogues of an artificial CO2 storage is very useful in order to understand the CO2 long term behaviour and thus to predict its possible impact on the surficial environment and life. Therefore the main objective of this work is to detect the affection of the CO2 leakages from a deep saline aquifer on the shallow aquifers, all of them located in the Gañuelas-Mazarrón Tertiary basin (Province of Murcia, Spain). This CO2 storage and leakage natural system can be analogous to an artificial CO2 storage with leakage phenomena. In order to reach these objectives, groundwaters from different aquifers in the site have been sampled and analysed for major elements, free and dissolved gases and stable isotopes, particularly ∂ 13 C and 3 He/ 4 He. The results obtained allow to conclude that this natural system is an interesting example of natural analogue for an artificial CO2 storage affected by leakage processes because the shallow fresh aquifers in the site are polluted by CO2 from the deep saline aquifer as a consequence of an intensive over-exploitation of these freshwater aquifers

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tablas de Daimiel National Park is located in the Upper Guadiana Basin and represents one of the largest and most important wetlands in Europe. The long term ecological integrity of this wetland is inherently associated with the maintenance of a shallow groundwater table, namely the Western Mancha aquifer (WMA) or Aquifer 23. The intensive use of groundwater, mainly for irrigation, has led over the last decades to deep socio‐economic changes. Such intensive use has also lowered the water table of Aquifer 23, drastically reducing the flooded area of the wetland and threatening its ecological integrity. A number of plans and measures have been developed and implemented since the declaration of overexploitation of Aquifer 23 in the year 1987. The most recent one is the Special Plan for the Upper Guadiana (SPUG), approved in 2008. This Plan is the main measure to comply with achieving the objective of good quantitative and qualitative status required under the Water Framework Directive (2000). This paper offers a new type of integrated analysis which allows assessing under a common lens the physical, economic and social dimensions of groundwater use in the area. The first objective is to calculate the groundwater footprint of agricultural production in the Upper Guadiana basin and its evolution during 2000‐2008. For this purpose, we have applied the Extended Water Footprint (EWF) methodology ‐a novel approach based on the classical Water Footprint (WF) approach‐ that includes an assessment of the water productivity from an economic and social perspective. Compared to the classical WF, the EWF allows for a more complete overview of the sector, providing new insights for policy decisions (e.g. to define options and possibilities on water re‐allocation in order to achieve both better ecosystem conservation and social equity). The second objective is to use the EWF to compare the existing authorized and non‐authorized or illegal use of water. This allows us to discuss current initiatives by public authorities in relation to the existing frame of water rights

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In arid countries worldwide, social conflicts between irrigation-based human development and the conservation of aquatic ecosystems are widespread and attract many public debates. This research focuses on the analysis of water and agricultural policies aimed at conserving groundwater resources and maintaining rurallivelihoods in a basin in Spain's central arid region. Intensive groundwater mining for irrigation has caused overexploitation of the basin's large aquifer, the degradation of reputed wetlands and has given rise to notable social conflicts over the years. With the aim of tackling the multifaceted socio-ecological interactions of complex water systems, the methodology used in this study consists in a novel integration into a common platform of an economic optimization model and a hydrology model WEAP (Water Evaluation And Planning system). This robust tool is used to analyze the spatial and temporal effects of different water and agricultural policies under different climate scenarios. It permits the prediction of different climate and policy outcomes across farm types (water stress impacts and adaptation), at basin's level (aquifer recovery), and along the policies’ implementation horizon (short and long run). Results show that the region's current quota-based water policies may contribute to reduce water consumption in the farms but will not be able to recover the aquifer and will inflict income losses to the rural communities. This situation would worsen in case of drought. Economies of scale and technology are evidenced as larger farms with cropping diversification and those equipped with modern irrigation will better adapt to water stress conditions. However, the long-term sustainability of the aquifer and the maintenance of rurallivelihoods will be attained only if additional policy measures are put in place such as the control of illegal abstractions and the establishing of a water bank. Within the policy domain, the research contributes to the new sustainable development strategy of the EU by concluding that, in water-scarce regions, effective integration of water and agricultural policies is essential for achieving the water protection objectives of the EU policies. Therefore, the design and enforcement of well-balanced region-specific polices is a major task faced by policy makers for achieving successful water management that will ensure nature protection and human development at tolerable social costs. From a methodological perspective, this research initiative contributes to better address hydrological questions as well as economic and social issues in complex water and human systems. Its integrated vision provides a valuable illustration to inform water policy and management decisions within contexts of water-related conflicts worldwide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CO2 capture and storage (CCS) projects are presently developed to reduce the emission of anthropogenic CO2 into the atmosphere. CCS technologies are expected to account for the 20% of the CO2 reduction by 2050. One of the main concerns of CCS is whether CO2 may remain confined within the geological formation into which it is injected since post-injection CO2 migration in the time scale of years, decades and centuries is not well understood. Theoretically, CO2 can be retained at depth i) as a supercritical fluid (physical trapping), ii) as a fluid slowly migrating in an aquifer due to long flow path (hydrodynamic trapping), iii) dissolved into ground waters (solubility trapping) and iv) precipitated secondary carbonates. Carbon dioxide will be injected in the near future (2012) at Hontomín (Burgos, Spain) in the frame of the Compostilla EEPR project, led by the Fundación Ciudad de la Energía (CIUDEN). In order to detect leakage in the operational stage, a pre-injection geochemical baseline is presently being developed. In this work a geochemical monitoring design is presented to provide information about the feasibility of CO2 storage at depth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the very first geochemical and isotopic data related to surface and spring waters and dissolved gases in the area of Hontomín–Huermeces (Burgos, Spain) are presented and discussed. Hontomín–Huermeces has been selected as a pilot site for the injection of pure (>99%) CO2. Injection and monitoring wells are planned to be drilled close to 6 oil wells completed in the 1980s for which detailed stratigraphical logs are available, indicating the presence of a confined saline aquifer at the depth of about 1500 m into which less than 100,000 tons of iquid CO2 will be injected, possibly starting in 2013. The chemical and features of the spring waters suggest that they are related to a shallow hydrogeological system as the concentration of the Total Dissolved Solids approaches 800 mg/L with a Ca2+(Mg2+)-HCO3− composition, similar to that of the surface waters. This is also supported by the oxygen and hydrogen isotopic ratios that have values lying between those of the Global and the Mediterranean Meteoric Water Lines. Some spring waters close to the oil wells are haracterized by relatively high concentrations of NO3− (up to 123 mg/L), unequivocally suggesting an anthropogenic source that adds to the main water–rock interaction processes. The latter can be referred to Ca-Mg-carbonate and, at a minor extent, Al-silicate dissolution, being the outcropping sedimentary rocks characterized by Palaeozoic to Quaternary rocks. Anomalous concentrations of Cl−, SO42−, As, B and Ba were measured in two springs discharging a few hundred meters from the oil wells and in the Rio Ubierna. These contents are significantly higher than those of the whole set of the studied waters and are possibly indicative of mixing processes, although at very low extent, between deep and shallow aquifers. No evidence of deep-seated gases interacting with the Hontomín–Huermeces waters was recognized in the chemistry of the disolved gases. This is likely due to the fact that they are mainly characterized by an atmospheric source as highlighted by the high contents of N2, O2 and Ar and by N2/Ar ratios that approach that of ASW (Air Saturated Water) and possibly masking any contribution related to a deep source. Nevertheless, significant concentrations (up to 63% by vol.) of isotopically negative CO2 (<−17.7‰ V-PDB) were found in some water samples, likely related to a biogenic source. The geochemical and isotopic data of this work are of particular importance when a monitoring program will be established to verify whether CO2 leakages, induced by the injection of this greenhouse gas, may be affecting the quality of the waters in the shallow hydrological circuits at Hontomín–Huermeces. In this respect, carbonate chemistry, the isotopic carbon of dissolved CO2 and TDIC (Total Dissolved Inorganic Carbon) and selected trace elements can be considered as useful parameters to trace the migration of the injected CO2 into near-surface environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo del presente estudio es el análisis de un sistema complejo, el Acuífero de la Mancha Occidental, mediante un modelo numérico de simulación que represente de la manera más rigurosa posible la evolución del Sistema Acuífero 23. Este modelo se realiza en régimen permanente con una rigurosa configuración del sistema desde el punto de vista geológico y geométrico. De esta forma se deja iniciado y planeado un modelo y su estructura que será una base real de futuras formulaciones transitorias, base de los sucesivos análisis de explotación y predicción. . Las distintas situaciones que en las últimas décadas ha experimentado el Sistema 23, soluciones que se han dado para las mismas, y los posibles planes de actuación que se podrían llevar a cabo en un futuro frente a condiciones cambiantes de clima y explotación se podrán estudiar a partir del presente modelo de simulación numérica. ABSTRACT The main purpose of this study is to analyses a complex system such as Western La Mancha Aquifer by the use of a numeric model that simulates as accurately as possible the evolution of Aquifer 23. This model is made in steady state with a thorough configuration of the system from both the geological and geometric point of view. Therefore, it is left initiated with a planned model and its structure which will be used as a real base for following transient flow simulations that also will be the foundation of subsequent prediction and exploitation analysis. The different situations that Aquifer 23 has experienced during the last decades; the solutions that have been given for them; and the possible plans that would be implemented in the future in order to deal with the changing environmental and exploitation conditions will be able to be studied using this model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the very first geochemical and isotopic data related to surface and spring waters and dissolved gases in the area of Hontomín-Huermeces (Burgos, Spain) are presented and discussed. Hontomín-Huermeces was selected as a pilot site for the injection of pure (>99 %) CO2. Injection and monitoring wells are planned to be drilled close to 6 oil wells completed in the 1980’s. Stratigraphical logs indicate the presence of a confined saline aquifer at the depth of about 1,500 m into which less than 100,000 tons of liquid CO2 will be injected, possibly starting in 2013. The chemical and isotopic features of the spring waters suggest the occurrence of a shallow aquifer having a Ca2+(Mg2+)-HCO3- composition, relatively low salinity (Total Dissolved Solids _800 mg/L) and a meteoric isotopic signature. Some spring waters close to the oil wells are characterized by relatively high concentrations of NO3- (up to 123 mg/L), unequivocally indicating anthropogenic contamination that adds to the main water-rock interaction processes. The latter can be referred to Ca-Mg-carbonate and, at a minor extent, Al-silicate dissolution, being the outcropping sedimentary rocks characterized by Palaeozoic to Quaternary rocks. Anomalous concentrations of Cl-, SO42-, As, B and Ba were measured in two springs discharging a few hundreds meters from the oil wells and in the Rio Ubierna, possibly indicative of mixing processes, although at very low extent, between deep and shallow aquifers. Gases dissolved in spring waters show relatively high concentrations of atmospheric species, such as N2, O2 and Ar, and isotopically negative CO2 (<-17.7 h V-PDB), likely related to a biogenic source, possibly masking any contribution related to a deep source. The geochemical and isotopic data of this study are of particular importance when a monitoring program will be established to verify whether CO2 leakages, induced by the injection of this greenhouse gas, may affect the quality of the waters of the shallow Hontomín-Huermeces hydrological circuit. In this respect, carbonate chemistry, the isotopic carbon of dissolved CO2 and TDIC (Total Dissolved Inorganic Carbon) and selected trace elements can be considered as useful parameters to trace the migration of the injected CO2 into near-surface environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente proyecto pretende mostrar las posibilidades de la recarga artificial como elemento de gestión de los recursos de agua subterránea del acuífero aluvial del río Llobregat, en su sector de la Cubeta de Sant Andreu de la Barca (Barcelona), el cual es fuente de abastecimiento urbano, agrícola e industrial del entorno de Sant Andreu de la Barca. Igualmente, se revisa la efectividad de la aplicación de dicha técnica que se practica actualmente. Hace años, las condiciones naturales del río hacían posible la recarga natural de la Cubeta, pero la implantación de industrias en la zona y la regulación mediante la presa de La Baells desde el año 1976, han originado cambios en el comportamiento natural del acuífero, que se han manifestado básicamente en una disminución de la recarga natural como consecuencia de la impermeabilización de los suelos originada por la urbanización de los mismos. Se ha producido también un fenómeno de colmatación del lecho del río, al dificultarse la removilización de los materiales finos depositados en el fondo del cauce, produciendo también una disminución de la recarga al acuífero a través del lecho. Por último, la mayor demanda de suministro por parte del sector industrial ha influido negativamente en el almacenamiento del acuífero. Desde hace décadas, se lleva efectuando una recarga artificial en el lecho del río para tratar de paliar en lo posible estos efectos perjudiciales. La misma se efectúa mediante dos sistemas distintos: escarificando el lecho del río para aumentar su capacidad de infiltración, y mediante la utilización de balsas de recarga, a través de las cuales se infiltra el agua en el acuífero. El objetivo de este proyecto es analizar el efecto actual que la recarga mediante balsas está teniendo sobre el acuífero. Para ello, se utilizarán, entre otras técnicas, la elaboración de un modelo matemático con el que poder simular el efecto de la recarga. VIII ABSTRACT This project aims to show the possibilities of artificial recharge as groundwater resources management element in the alluvial aquifer of the Llobregat River, in the sector of the Basin of Sant Andreu de la Barca (Barcelona), which is a source of urban, agricultural and industrial supply of the Sant Andreu de la Barca area. Too, the effectiveness of the current implementation of this technique is reviewed. Years ago, natural river conditions made possible the natural recharge of the aquifer, but the establishment of industries in the area and the river regulation by the la Baells dam since 1976, have led to changes in the natural behavior of the aquifer, which basically are a decrease in natural recharge, because the soil has become impervious, due to land urbanization. There has been also a phenomenon of clogging of the river bed, caused by the difficult in the remobilization of fine materials deposited on the river bed, which has produced a decrease in the groundwater recharge through the river. Finally, the increase in water demand by the industrial sector, has diminished aquifer storage. For decades, artificial recharge in the river bed has been practiced to alleviate negative effects. It is done by two different systems: scratching the river bed to increase its infiltration capacity, and using recharge ponds, through which water infiltrates into the aquifer. The objective of this project is to analyze the current effect that recharge by ponds is having in the aquifer. Among other techniques, mathematical modeling has been used for simulating the effect of artificial recharge in the aquifer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La subsidencia del terreno constituye un riesgo geotécnico capaz de afectar a amplias zonas del territorio. Este fenómeno puede producirse por la consolidación de los suelos finos de un sistema acuífero, disolución y colapso de materiales yesíferos, actuaciones humanes, etc. Muchas regiones del mundo, y gran parte de la geografía peninsular, pueden verse afectadas de manera significativa por este fenómeno. En este proyecto se pretende crear una metodología de trabajo que se pueda aplicar en cualquier ámbito geográfico para el control de las subsidencias. Para la realización de esta metodología se han tomado tres técnicas de auscultación de subsidencias, nivelación geométrica de precisión, nivelación GPS y DinSAR, y comparado sus pros y contras, así como las precisiones esperadas y el organigrama de trabajo. Para que se vea mejor la funcionalidad del sistema, se ha procedido a la implantación teórica del mismo en una localización al Norte de la ciudad de Madrid con un escenario realista. Abstract Subsidence is a geotechnical risk which can affect large countryside areas. This phenomenon may be produced by the consolidation of an aquifer system fine soils, dissolution and collapse of gypsum materials, human actions, etc. Many regions of the world, and much of the Iberian Peninsula, may be significantly affected by this condition. This project aims to create a methodology that can be applied in any geographical area to control subsidence. For this purpose, three subsidence monitoring techniques have been studied. Those are precision geometric leveling, GPS leveling and DInSAR. During the project, pros and cons as well as the precisions expected and work schedule have been studied and compared. The subsidence auscultation system has been theoretically implemented in a location. This location is a realistic stage located north of Madrid

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the framework of a global investigation of the Spanish natural analogues of CO2 storage and leakage, four selected sites from the Mazarrón?Gañuelas Tertiary Basin (Murcia, Spain) were studied for computing the diffuse soil CO2 flux, by using the accumulation chamber method. The Basin is characterized by the presence of a deep, saline, thermal (?47 ?C) CO2-rich aquifer intersected by two deep geothermal exploration wells named ?El Saladillo? (535 m) and ?El Reventón? (710 m). The CO2 flux data were processed by means of a graphical?statistical method, kriging estimation and sequential Gaussian simulation algorithms. The results have allowed concluding that the Tertiary marly cap-rock of this CO2-rich aquifer acts as a very effective sealing, preventing any CO2 leak from this natural CO2 storage site, being therefore an excellent scenario to guarantee, by analogy, the safety of a CO2 storage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo de este proyecto es investigar la viabilidad del almacenamiento de CO2 en un acuífero salino profundo ubicado en el margen suroccidental de la Cuenca del Guadalquivir. Este proyecto está destinado a una operación industrial con tasas de emisión de CO2 superiores a medio millón de toneladas anuales. Se ha construido un modelo geológico de la formación almacén en Petrel y se ha simulado la inyección utilizando la versión composicional de ECLIPSE. El objetivo es inyectar CO2 manteniendo una tasa de inyección constante durante 30 años, el máximo periodo permitido por la legislación española sobre almacenamiento geológico de CO2. La cantidad de CO2 inyectada en cada uno de los casos ha sido determinada. Los resultados parecen indicar que la inyección de CO2 a escala industrial podría ser viable, aunque la viabilidad del proyecto podría verse comprometida por la escasa profundidad a la que se encuentra el contacto entre la formación almacén y el sello lateral. Antes de seguir adelante con el desarrollo del proyecto sería conveniente determinar mejor la continuidad lateral de la formación almacén y sus condiciones de sello. ABSTRACT The aim of this project is to investigate the feasibility of CO2 geological storage in a deep saline aquifer located onshore in the southwestern margin of Guadalquivir Basin. The project is addressed for an industrial scale operation with CO2 emission rates higher than half a million tons per year. A geological model of the target reservoir was built in Petrel and injection simulations were performed with the compositional version of ECLIPSE. The purpose is to inject CO2 at constant rate during 30 years, the maximum period allowed by the Spanish law on carbon dioxide geological storage. The amount of CO2 injected in each studied scenario has been determined. Results suggest that CO2 injection at industrial scale could be viable, but the project feasibility could be endangered by the shallow depth of the contact between the target reservoir and the lateral seal. Prior to injection, further work should include ascertaining the reservoir’s lateral continuity and better determination of its sealing conditions