8 resultados para Guadiana estuary

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research was the implementation of a participatory process for the development of a tool to support decision making in water management. The process carried out aims at attaining an improved understanding of the water system and an encouragement of the exchange of knowledge and views between stakeholders to build a shared vision of the system. In addition, the process intends to identify impacts of possible solutions to given problems, which will help to take decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tablas de Daimiel National Park is located in the Upper Guadiana Basin and represents one of the largest and most important wetlands in Europe. The long term ecological integrity of this wetland is inherently associated with the maintenance of a shallow groundwater table, namely the Western Mancha aquifer (WMA) or Aquifer 23. The intensive use of groundwater, mainly for irrigation, has led over the last decades to deep socio‐economic changes. Such intensive use has also lowered the water table of Aquifer 23, drastically reducing the flooded area of the wetland and threatening its ecological integrity. A number of plans and measures have been developed and implemented since the declaration of overexploitation of Aquifer 23 in the year 1987. The most recent one is the Special Plan for the Upper Guadiana (SPUG), approved in 2008. This Plan is the main measure to comply with achieving the objective of good quantitative and qualitative status required under the Water Framework Directive (2000). This paper offers a new type of integrated analysis which allows assessing under a common lens the physical, economic and social dimensions of groundwater use in the area. The first objective is to calculate the groundwater footprint of agricultural production in the Upper Guadiana basin and its evolution during 2000‐2008. For this purpose, we have applied the Extended Water Footprint (EWF) methodology ‐a novel approach based on the classical Water Footprint (WF) approach‐ that includes an assessment of the water productivity from an economic and social perspective. Compared to the classical WF, the EWF allows for a more complete overview of the sector, providing new insights for policy decisions (e.g. to define options and possibilities on water re‐allocation in order to achieve both better ecosystem conservation and social equity). The second objective is to use the EWF to compare the existing authorized and non‐authorized or illegal use of water. This allows us to discuss current initiatives by public authorities in relation to the existing frame of water rights

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente trabajo de investigación, pretende realizar un estudio de la evaluación y control de los parámetros de calidad en varias masas de agua de una misma cuenca. En este sentido, se ha concretado el trabajo en las principales masas de agua de la Cuenca Hidrográfica del Guadiana, donde se encuentran, dos de los principales embalses nacionales; el embalse de La Serena, que con sus 3.219 Hm3 de capacidad es el mayor de España y el embalse de Cijara (6º de mayor capacidad del estado con 1.505 Hm3) El resto de embalses sobre los que versa el presente trabajo están, de una manera u otra forma, ligados geográfica e hidrológicamente a los dos mencionados. Se han analizado y estudiado diferentes series de datos de las características físico-químicas, características físicas, características químicas, características químico-biológicas y características bacteriológicas de los embalses de Cijara, Garcia Sola, Orellana, La Serena y Zújar entre los años 2000 y 2012. De éste análisis se desprende que existen relaciones entre líneas de tendencias de diferentes parámetros para los embalses estudiados de la Zona Media de la Cuenca Hidrográfica del Guadiana durante la serie estudiada. En la misma línea, se concluye que, por un lado existen relaciones entre diferentes parámetros de calidad de un mismo embalse, y por otro, que existen relaciones entre varios parámetros de diferentes embalses, con lo que conocido un valor de un parámetro determinado de un embalse se podría estimar (de forma aproximada) otro parámetro determinado de un embalse distinto de la misma cuenca. The present work of investigation tries to conduct a study of the evaluation and control of the quality parameters in several bodies of water in a basin. In this sense, is has completed work in the main bodies of water of the Guadiana hydrographic basin, where they are, two of the main national reservoirs; the reservoir of La Serena, which with its 3.219 Hm3 capacity is the largest in Spain and the embalse de Cíjara (6th largest State with 1.505 Hm3 capacity). The other reservoirs on which deals with this work are, in one way or another way, linked geographical and hydrologic to the two mentioned. They have been analyzed and studied different data series of physicochemical characteristics, physical characteristics, chemical properties, chemical-biological characteristics and features bacteriological of reservoirs of Cíjara, García single, Orellana, La Serena and Zújar between 2000 and 2012. This analysis shows that there are relations between lines of trends of different parameters for the studied reservoirs in the area average of the river Guadiana basin during the series studied. In the same vein, it is concluded that, on the one hand relationships exist between different quality parameters of a reservoir, and on the other, that there are relationships between various parameters of different reservoirs, with known value for a particular parameter of a reservoir could estimate (in approximate form) other specific parameter of a reservoir other than the same basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Introduction: setting and problem definition 2. The Adaptation Pathway –2.1 Stage 1: appraising risks and opportunities •Step 1: Impact analysis •Step 2: Policy analysis •Step 3: Socio-institutional analysis –2.2 Stage 2: appraising and choosing adaptation opt ions •Step 4: identifying and prioritizing adaptation o ptions 3. Conclusions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following the Integrated Water Resources Management approach, the European Water Framework Directive demands Member States to develop water management plans at the catchment level. Those plans have to integrate the different interests and must be developed with stakeholder participation. To face these requirements, managers need tools to assess the impacts of possible management alternatives on natural and socio-economic systems. These tools should ideally be able to address the complexity and uncertainties of the water system, while serving as a platform for stakeholder participation. The objective of our research was to develop a participatory integrated assessment model, based on the combination of a crop model, an economic model and a participatory Bayesian network, with an application in the middle Guadiana sub-basin, in Spain. The methodology is intended to capture the complexity of water management problems, incorporating the relevant sectors, as well as the relevant scales involved in water management decision making. The integrated model has allowed us testing different management, market and climate change scenarios and assessing the impacts of such scenarios on the natural system (crops), on the socio-economic system (farms) and on the environment (water resources). Finally, this integrated assessment modelling process has allowed stakeholder participation, complying with the main requirements of current European water laws.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A participatory modelling process has been conducted in two areas of the Guadiana river (the upper and the middle sub-basins), in Spain, with the aim of providing support for decision making in the water management field. The area has a semi-arid climate where irrigated agriculture plays a key role in the economic development of the region and accounts for around 90% of water use. Following the guidelines of the European Water Framework Directive, we promote stakeholder involvement in water management with the aim to achieve an improved understanding of the water system and to encourage the exchange of knowledge and views between stakeholders in order to help building a shared vision of the system. At the same time, the resulting models, which integrate the different sectors and views, provide some insight of the impacts that different management options and possible future scenarios could have. The methodology is based on a Bayesian network combined with an economic model and, in the middle Guadiana sub-basin, with a crop model. The resulting integrated modelling framework is used to simulate possible water policy, market and climate scenarios to find out the impacts of those scenarios on farm income and on the environment. At the end of the modelling process, an evaluation questionnaire was filled by participants in both sub-basins. Results show that this type of processes are found very helpful by stakeholders to improve the system understanding, to understand each others views and to reduce conflict when it exists. In addition, they found the model an extremely useful tool to support management. The graphical interface, the quantitative output and the explicit representation of uncertainty helped stakeholders to better understand the implications of the scenario tested. Finally, the combination of different types of models was also found very useful, as it allowed exploring in detail specific aspects of the water management problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change is already affecting many natural systems and human environments worldwide, like the semiarid Guadiana Basin in Spain. This paper illustrates a systematic analysis of climate change adaptation in the Guadiana irrigation farming region. The study applies a solution-oriented diagnostic framework structured along a series of sequential analytical steps. An initial stage integrates economic and hydrologic modeling to evaluate the effects of climate change on the agriculture and water sectors. Next, adaptation measures are identified and prioritized through a stakeholder-based multi-criteria analysis. Finally, a social network analysis identifies key actors and their relationships in climate change adaptation. The study shows that under a severe climate change scenario, water availability could be substantially decreased and drought occurrence will augment. In consequence, farmers will adapt their crops to a lesser amount of water and income gains will diminish, particularly for smallholder farms. Among the various adaptation measures considered, those related to private farming (new crop varieties and modern irrigation technologies) are ranked highest, whereas public-funded hard measures (reservoirs) are lowest and public soft measures (insurance) are ranked middle. In addition, stakeholders highlighted that the most relevant criteria for selecting adaptation plans are environmental protection, financial feasibility and employment creation. Nonetheless, the social network analysis evidenced the need to strengthen the links among the different stakeholder groups to facilitate the implementation of adaptation processes. In sum, the diagnostic framework applied in this research can be considered a valuable tool for guiding and supporting decision making in climate change adaptation and communicating scientific results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La Directiva Marco del Agua (DMA) (CE, 2000) ha supuesto un importante salto cualitativo en la política del agua europea y española, a través de la introducción del concepto de la Gestión Integrada de los Recursos Hídricos y de una perspectiva fundamentalmente medioambiental en cuanto a la planificación de cuencas hidrográficas. Este nuevo enfoque ofrece importantes oportunidades para una gestión más eficiente y sostenible de los recursos hídricos pero plantea también importantes retos, tanto para las autoridades en esta materia como para los usuarios del agua. La DMA constituye el marco común europeo para la gestión del agua y marca las directrices fundamentales que han de guiar la planificación y la gestión de los recursos hídricos en los Estados miembros. El objetivo de la DMA es alcanzar el buen estado ecológico de las masas de agua en las cuencas europeas en el año 2015, aunque establece distintos plazos hasta el año 2027 en caso de que existan impedimentos para lograr este objetivo.