13 resultados para Growing self-organising maps
em Universidad Politécnica de Madrid
Resumo:
The Self-OrganizingMap (SOM) is a neural network model that performs an ordered projection of a high dimensional input space in a low-dimensional topological structure. The process in which such mapping is formed is defined by the SOM algorithm, which is a competitive, unsupervised and nonparametric method, since it does not make any assumption about the input data distribution. The feature maps provided by this algorithm have been successfully applied for vector quantization, clustering and high dimensional data visualization processes. However, the initialization of the network topology and the selection of the SOM training parameters are two difficult tasks caused by the unknown distribution of the input signals. A misconfiguration of these parameters can generate a feature map of low-quality, so it is necessary to have some measure of the degree of adaptation of the SOM network to the input data model. The topologypreservation is the most common concept used to implement this measure. Several qualitative and quantitative methods have been proposed for measuring the degree of SOM topologypreservation, particularly using Kohonen's model. In this work, two methods for measuring the topologypreservation of the Growing Cell Structures (GCSs) model are proposed: the topographic function and the topology preserving map
Resumo:
It has been demonstrated that rating trust and reputation of individual nodes is an effective approach in distributed environments in order to improve security, support decision-making and promote node collaboration. Nevertheless, these systems are vulnerable to deliberate false or unfair testimonies. In one scenario, the attackers collude to give negative feedback on the victim in order to lower or destroy its reputation. This attack is known as bad mouthing attack. In another scenario, a number of entities agree to give positive feedback on an entity (often with adversarial intentions). This attack is known as ballot stuffing. Both attack types can significantly deteriorate the performances of the network. The existing solutions for coping with these attacks are mainly concentrated on prevention techniques. In this work, we propose a solution that detects and isolates the abovementioned attackers, impeding them in this way to further spread their malicious activity. The approach is based on detecting outliers using clustering, in this case self-organizing maps. An important advantage of this approach is that we have no restrictions on training data, and thus there is no need for any data pre-processing. Testing results demonstrate the capability of the approach in detecting both bad mouthing and ballot stuffing attack in various scenarios.
Resumo:
The area of Human-Machine Interface is growing fast due to its high importance in all technological systems. The basic idea behind designing human-machine interfaces is to enrich the communication with the technology in a natural and easy way. Gesture interfaces are a good example of transparent interfaces. Such interfaces must identify properly the action the user wants to perform, so the proper gesture recognition is of the highest importance. However, most of the systems based on gesture recognition use complex methods requiring high-resource devices. In this work, we propose to model gestures capturing their temporal properties, which significantly reduce storage requirements, and use clustering techniques, namely self-organizing maps and unsupervised genetic algorithm, for their classification. We further propose to train a certain number of algorithms with different parameters and combine their decision using majority voting in order to decrease the false positive rate. The main advantage of the approach is its simplicity, which enables the implementation using devices with limited resources, and therefore low cost. The testing results demonstrate its high potential.
Resumo:
Providing security to the emerging field of ambient intelligence will be difficult if we rely only on existing techniques, given their dynamic and heterogeneous nature. Moreover, security demands of these systems are expected to grow, as many applications will require accurate context modeling. In this work we propose an enhancement to the reputation systems traditionally deployed for securing these systems. Different anomaly detectors are combined using the immunological paradigm to optimize reputation system performance in response to evolving security requirements. As an example, the experiments show how a combination of detectors based on unsupervised techniques (self-organizing maps and genetic algorithms) can help to significantly reduce the global response time of the reputation system. The proposed solution offers many benefits: scalability, fast response to adversarial activities, ability to detect unknown attacks, high adaptability, and high ability in detecting and confining attacks. For these reasons, we believe that our solution is capable of coping with the dynamism of ambient intelligence systems and the growing requirements of security demands.
Resumo:
Entendemos por inteligencia colectiva una forma de inteligencia que surge de la colaboración y la participación de varios individuos o, siendo más estrictos, varias entidades. En base a esta sencilla definición podemos observar que este concepto es campo de estudio de las más diversas disciplinas como pueden ser la sociología, las tecnologías de la información o la biología, atendiendo cada una de ellas a un tipo de entidades diferentes: seres humanos, elementos de computación o animales. Como elemento común podríamos indicar que la inteligencia colectiva ha tenido como objetivo el ser capaz de fomentar una inteligencia de grupo que supere a la inteligencia individual de las entidades que lo forman a través de mecanismos de coordinación, cooperación, competencia, integración, diferenciación, etc. Sin embargo, aunque históricamente la inteligencia colectiva se ha podido desarrollar de forma paralela e independiente en las distintas disciplinas que la tratan, en la actualidad, los avances en las tecnologías de la información han provocado que esto ya no sea suficiente. Hoy en día seres humanos y máquinas a través de todo tipo de redes de comunicación e interfaces, conviven en un entorno en el que la inteligencia colectiva ha cobrado una nueva dimensión: ya no sólo puede intentar obtener un comportamiento superior al de sus entidades constituyentes sino que ahora, además, estas inteligencias individuales son completamente diferentes unas de otras y aparece por lo tanto el doble reto de ser capaces de gestionar esta gran heterogeneidad y al mismo tiempo ser capaces de obtener comportamientos aún más inteligentes gracias a las sinergias que los distintos tipos de inteligencias pueden generar. Dentro de las áreas de trabajo de la inteligencia colectiva existen varios campos abiertos en los que siempre se intenta obtener unas prestaciones superiores a las de los individuos. Por ejemplo: consciencia colectiva, memoria colectiva o sabiduría colectiva. Entre todos estos campos nosotros nos centraremos en uno que tiene presencia en la práctica totalidad de posibles comportamientos inteligentes: la toma de decisiones. El campo de estudio de la toma de decisiones es realmente amplio y dentro del mismo la evolución ha sido completamente paralela a la que citábamos anteriormente en referencia a la inteligencia colectiva. En primer lugar se centró en el individuo como entidad decisoria para posteriormente desarrollarse desde un punto de vista social, institucional, etc. La primera fase dentro del estudio de la toma de decisiones se basó en la utilización de paradigmas muy sencillos: análisis de ventajas e inconvenientes, priorización basada en la maximización de algún parámetro del resultado, capacidad para satisfacer los requisitos de forma mínima por parte de las alternativas, consultas a expertos o entidades autorizadas o incluso el azar. Sin embargo, al igual que el paso del estudio del individuo al grupo supone una nueva dimensión dentro la inteligencia colectiva la toma de decisiones colectiva supone un nuevo reto en todas las disciplinas relacionadas. Además, dentro de la decisión colectiva aparecen dos nuevos frentes: los sistemas de decisión centralizados y descentralizados. En el presente proyecto de tesis nos centraremos en este segundo, que es el que supone una mayor atractivo tanto por las posibilidades de generar nuevo conocimiento y trabajar con problemas abiertos actualmente así como en lo que respecta a la aplicabilidad de los resultados que puedan obtenerse. Ya por último, dentro del campo de los sistemas de decisión descentralizados existen varios mecanismos fundamentales que dan lugar a distintas aproximaciones a la problemática propia de este campo. Por ejemplo el liderazgo, la imitación, la prescripción o el miedo. Nosotros nos centraremos en uno de los más multidisciplinares y con mayor capacidad de aplicación en todo tipo de disciplinas y que, históricamente, ha demostrado que puede dar lugar a prestaciones muy superiores a otros tipos de mecanismos de decisión descentralizados: la confianza y la reputación. Resumidamente podríamos indicar que confianza es la creencia por parte de una entidad que otra va a realizar una determinada actividad de una forma concreta. En principio es algo subjetivo, ya que la confianza de dos entidades diferentes sobre una tercera no tiene porqué ser la misma. Por otro lado, la reputación es la idea colectiva (o evaluación social) que distintas entidades de un sistema tiene sobre otra entidad del mismo en lo que respecta a un determinado criterio. Es por tanto una información de carácter colectivo pero única dentro de un sistema, no asociada a cada una de las entidades del sistema sino por igual a todas ellas. En estas dos sencillas definiciones se basan la inmensa mayoría de sistemas colectivos. De hecho muchas disertaciones indican que ningún tipo de organización podría ser viable de no ser por la existencia y la utilización de los conceptos de confianza y reputación. A partir de ahora, a todo sistema que utilice de una u otra forma estos conceptos lo denominaremos como sistema de confianza y reputación (o TRS, Trust and Reputation System). Sin embargo, aunque los TRS son uno de los aspectos de nuestras vidas más cotidianos y con un mayor campo de aplicación, el conocimiento que existe actualmente sobre ellos no podría ser más disperso. Existen un gran número de trabajos científicos en todo tipo de áreas de conocimiento: filosofía, psicología, sociología, economía, política, tecnologías de la información, etc. Pero el principal problema es que no existe una visión completa de la confianza y reputación en su sentido más amplio. Cada disciplina focaliza sus estudios en unos aspectos u otros dentro de los TRS, pero ninguna de ellas trata de explotar el conocimiento generado en el resto para mejorar sus prestaciones en su campo de aplicación concreto. Aspectos muy detallados en algunas áreas de conocimiento son completamente obviados por otras, o incluso aspectos tratados por distintas disciplinas, al ser estudiados desde distintos puntos de vista arrojan resultados complementarios que, sin embargo, no son aprovechados fuera de dichas áreas de conocimiento. Esto nos lleva a una dispersión de conocimiento muy elevada y a una falta de reutilización de metodologías, políticas de actuación y técnicas de una disciplina a otra. Debido su vital importancia, esta alta dispersión de conocimiento se trata de uno de los principales problemas que se pretenden resolver con el presente trabajo de tesis. Por otro lado, cuando se trabaja con TRS, todos los aspectos relacionados con la seguridad están muy presentes ya que muy este es un tema vital dentro del campo de la toma de decisiones. Además también es habitual que los TRS se utilicen para desempeñar responsabilidades que aportan algún tipo de funcionalidad relacionada con el mundo de la seguridad. Por último no podemos olvidar que el acto de confiar está indefectiblemente unido al de delegar una determinada responsabilidad, y que al tratar estos conceptos siempre aparece la idea de riesgo, riesgo de que las expectativas generadas por el acto de la delegación no se cumplan o se cumplan de forma diferente. Podemos ver por lo tanto que cualquier sistema que utiliza la confianza para mejorar o posibilitar su funcionamiento, por su propia naturaleza, es especialmente vulnerable si las premisas en las que se basa son atacadas. En este sentido podemos comprobar (tal y como analizaremos en más detalle a lo largo del presente documento) que las aproximaciones que realizan las distintas disciplinas que tratan la violación de los sistemas de confianza es de lo más variado. únicamente dentro del área de las tecnologías de la información se ha intentado utilizar alguno de los enfoques de otras disciplinas de cara a afrontar problemas relacionados con la seguridad de TRS. Sin embargo se trata de una aproximación incompleta y, normalmente, realizada para cumplir requisitos de aplicaciones concretas y no con la idea de afianzar una base de conocimiento más general y reutilizable en otros entornos. Con todo esto en cuenta, podemos resumir contribuciones del presente trabajo de tesis en las siguientes. • La realización de un completo análisis del estado del arte dentro del mundo de la confianza y la reputación que nos permite comparar las ventajas e inconvenientes de las diferentes aproximación que se realizan a estos conceptos en distintas áreas de conocimiento. • La definición de una arquitectura de referencia para TRS que contempla todas las entidades y procesos que intervienen en este tipo de sistemas. • La definición de un marco de referencia para analizar la seguridad de TRS. Esto implica tanto identificar los principales activos de un TRS en lo que respecta a la seguridad, así como el crear una tipología de posibles ataques y contramedidas en base a dichos activos. • La propuesta de una metodología para el análisis, el diseño, el aseguramiento y el despliegue de un TRS en entornos reales. Adicionalmente se exponen los principales tipos de aplicaciones que pueden obtenerse de los TRS y los medios para maximizar sus prestaciones en cada una de ellas. • La generación de un software que permite simular cualquier tipo de TRS en base a la arquitectura propuesta previamente. Esto permite evaluar las prestaciones de un TRS bajo una determinada configuración en un entorno controlado previamente a su despliegue en un entorno real. Igualmente es de gran utilidad para evaluar la resistencia a distintos tipos de ataques o mal-funcionamientos del sistema. Además de las contribuciones realizadas directamente en el campo de los TRS, hemos realizado aportaciones originales a distintas áreas de conocimiento gracias a la aplicación de las metodologías de análisis y diseño citadas con anterioridad. • Detección de anomalías térmicas en Data Centers. Hemos implementado con éxito un sistema de deteción de anomalías térmicas basado en un TRS. Comparamos la detección de prestaciones de algoritmos de tipo Self-Organized Maps (SOM) y Growing Neural Gas (GNG). Mostramos como SOM ofrece mejores resultados para anomalías en los sistemas de refrigeración de la sala mientras que GNG es una opción más adecuada debido a sus tasas de detección y aislamiento para casos de anomalías provocadas por una carga de trabajo excesiva. • Mejora de las prestaciones de recolección de un sistema basado en swarm computing y odometría social. Gracias a la implementación de un TRS conseguimos mejorar las capacidades de coordinación de una red de robots autónomos distribuidos. La principal contribución reside en el análisis y la validación de las mejoras increméntales que pueden conseguirse con la utilización apropiada de la información existente en el sistema y que puede ser relevante desde el punto de vista de un TRS, y con la implementación de algoritmos de cálculo de confianza basados en dicha información. • Mejora de la seguridad de Wireless Mesh Networks contra ataques contra la integridad, la confidencialidad o la disponibilidad de los datos y / o comunicaciones soportadas por dichas redes. • Mejora de la seguridad de Wireless Sensor Networks contra ataques avanzamos, como insider attacks, ataques desconocidos, etc. Gracias a las metodologías presentadas implementamos contramedidas contra este tipo de ataques en entornos complejos. En base a los experimentos realizados, hemos demostrado que nuestra aproximación es capaz de detectar y confinar varios tipos de ataques que afectan a los protocoles esenciales de la red. La propuesta ofrece unas velocidades de detección muy altas así como demuestra que la inclusión de estos mecanismos de actuación temprana incrementa significativamente el esfuerzo que un atacante tiene que introducir para comprometer la red. Finalmente podríamos concluir que el presente trabajo de tesis supone la generación de un conocimiento útil y aplicable a entornos reales, que nos permite la maximización de las prestaciones resultantes de la utilización de TRS en cualquier tipo de campo de aplicación. De esta forma cubrimos la principal carencia existente actualmente en este campo, que es la falta de una base de conocimiento común y agregada y la inexistencia de una metodología para el desarrollo de TRS que nos permita analizar, diseñar, asegurar y desplegar TRS de una forma sistemática y no artesanal y ad-hoc como se hace en la actualidad. ABSTRACT By collective intelligence we understand a form of intelligence that emerges from the collaboration and competition of many individuals, or strictly speaking, many entities. Based on this simple definition, we can see how this concept is the field of study of a wide range of disciplines, such as sociology, information science or biology, each of them focused in different kinds of entities: human beings, computational resources, or animals. As a common factor, we can point that collective intelligence has always had the goal of being able of promoting a group intelligence that overcomes the individual intelligence of the basic entities that constitute it. This can be accomplished through different mechanisms such as coordination, cooperation, competence, integration, differentiation, etc. Collective intelligence has historically been developed in a parallel and independent way among the different disciplines that deal with it. However, this is not enough anymore due to the advances in information technologies. Nowadays, human beings and machines coexist in environments where collective intelligence has taken a new dimension: we yet have to achieve a better collective behavior than the individual one, but now we also have to deal with completely different kinds of individual intelligences. Therefore, we have a double goal: being able to deal with this heterogeneity and being able to get even more intelligent behaviors thanks to the synergies that the different kinds of intelligence can generate. Within the areas of collective intelligence there are several open topics where they always try to get better performances from groups than from the individuals. For example: collective consciousness, collective memory, or collective wisdom. Among all these topics we will focus on collective decision making, that has influence in most of the collective intelligent behaviors. The field of study of decision making is really wide, and its evolution has been completely parallel to the aforementioned collective intelligence. Firstly, it was focused on the individual as the main decision-making entity, but later it became involved in studying social and institutional groups as basic decision-making entities. The first studies within the decision-making discipline were based on simple paradigms, such as pros and cons analysis, criteria prioritization, fulfillment, following orders, or even chance. However, in the same way that studying the community instead of the individual meant a paradigm shift within collective intelligence, collective decision-making means a new challenge for all the related disciplines. Besides, two new main topics come up when dealing with collective decision-making: centralized and decentralized decision-making systems. In this thesis project we focus in the second one, because it is the most interesting based on the opportunities to generate new knowledge and deal with open issues in this area, as well as these results can be put into practice in a wider set of real-life environments. Finally, within the decentralized collective decision-making systems discipline, there are several basic mechanisms that lead to different approaches to the specific problems of this field, for example: leadership, imitation, prescription, or fear. We will focus on trust and reputation. They are one of the most multidisciplinary concepts and with more potential for applying them in every kind of environments. Besides, they have historically shown that they can generate better performance than other decentralized decision-making mechanisms. Shortly, we say trust is the belief of one entity that the outcome of other entities’ actions is going to be in a specific way. It is a subjective concept because the trust of two different entities in another one does not have to be the same. Reputation is the collective idea (or social evaluation) that a group of entities within a system have about another entity based on a specific criterion. Thus, it is a collective concept in its origin. It is important to say that the behavior of most of the collective systems are based on these two simple definitions. In fact, a lot of articles and essays describe how any organization would not be viable if the ideas of trust and reputation did not exist. From now on, we call Trust an Reputation System (TRS) to any kind of system that uses these concepts. Even though TRSs are one of the most common everyday aspects in our lives, the existing knowledge about them could not be more dispersed. There are thousands of scientific works in every field of study related to trust and reputation: philosophy, psychology, sociology, economics, politics, information sciences, etc. But the main issue is that a comprehensive vision of trust and reputation for all these disciplines does not exist. Every discipline focuses its studies on a specific set of topics but none of them tries to take advantage of the knowledge generated in the other disciplines to improve its behavior or performance. Detailed topics in some fields are completely obviated in others, and even though the study of some topics within several disciplines produces complementary results, these results are not used outside the discipline where they were generated. This leads us to a very high knowledge dispersion and to a lack in the reuse of methodologies, policies and techniques among disciplines. Due to its great importance, this high dispersion of trust and reputation knowledge is one of the main problems this thesis contributes to solve. When we work with TRSs, all the aspects related to security are a constant since it is a vital aspect within the decision-making systems. Besides, TRS are often used to perform some responsibilities related to security. Finally, we cannot forget that the act of trusting is invariably attached to the act of delegating a specific responsibility and, when we deal with these concepts, the idea of risk is always present. This refers to the risk of generated expectations not being accomplished or being accomplished in a different way we anticipated. Thus, we can see that any system using trust to improve or enable its behavior, because of its own nature, is especially vulnerable if the premises it is based on are attacked. Related to this topic, we can see that the approaches of the different disciplines that study attacks of trust and reputation are very diverse. Some attempts of using approaches of other disciplines have been made within the information science area of knowledge, but these approaches are usually incomplete, not systematic and oriented to achieve specific requirements of specific applications. They never try to consolidate a common base of knowledge that could be reusable in other context. Based on all these ideas, this work makes the following direct contributions to the field of TRS: • The compilation of the most relevant existing knowledge related to trust and reputation management systems focusing on their advantages and disadvantages. • We define a generic architecture for TRS, identifying the main entities and processes involved. • We define a generic security framework for TRS. We identify the main security assets and propose a complete taxonomy of attacks for TRS. • We propose and validate a methodology to analyze, design, secure and deploy TRS in real-life environments. Additionally we identify the principal kind of applications we can implement with TRS and how TRS can provide a specific functionality. • We develop a software component to validate and optimize the behavior of a TRS in order to achieve a specific functionality or performance. In addition to the contributions made directly to the field of the TRS, we have made original contributions to different areas of knowledge thanks to the application of the analysis, design and security methodologies previously presented: • Detection of thermal anomalies in Data Centers. Thanks to the application of the TRS analysis and design methodologies, we successfully implemented a thermal anomaly detection system based on a TRS.We compare the detection performance of Self-Organized- Maps and Growing Neural Gas algorithms. We show how SOM provides better results for Computer Room Air Conditioning anomaly detection, yielding detection rates of 100%, in training data with malfunctioning sensors. We also show that GNG yields better detection and isolation rates for workload anomaly detection, reducing the false positive rate when compared to SOM. • Improving the performance of a harvesting system based on swarm computing and social odometry. Through the implementation of a TRS, we achieved to improve the ability of coordinating a distributed network of autonomous robots. The main contribution lies in the analysis and validation of the incremental improvements that can be achieved with proper use information that exist in the system and that are relevant for the TRS, and the implementation of the appropriated trust algorithms based on such information. • Improving Wireless Mesh Networks security against attacks against the integrity, confidentiality or availability of data and communications supported by these networks. Thanks to the implementation of a TRS we improved the detection time rate against these kind of attacks and we limited their potential impact over the system. • We improved the security of Wireless Sensor Networks against advanced attacks, such as insider attacks, unknown attacks, etc. Thanks to the TRS analysis and design methodologies previously described, we implemented countermeasures against such attacks in a complex environment. In our experiments we have demonstrated that our system is capable of detecting and confining various attacks that affect the core network protocols. We have also demonstrated that our approach is capable of rapid attack detection. Also, it has been proven that the inclusion of the proposed detection mechanisms significantly increases the effort the attacker has to introduce in order to compromise the network. Finally we can conclude that, to all intents and purposes, this thesis offers a useful and applicable knowledge in real-life environments that allows us to maximize the performance of any system based on a TRS. Thus, we deal with the main deficiency of this discipline: the lack of a common and complete base of knowledge and the lack of a methodology for the development of TRS that allow us to analyze, design, secure and deploy TRS in a systematic way.
Resumo:
The increasing complexity of current software systems is encouraging the development of self-managed software architectures, i.e. systems capable of reconfiguring their structure at runtime to fulfil a set of goals. Several approaches have covered different aspects of their development, but some issues remain open, such as the maintainability or the scalability of self-management subsystems. Centralized approaches, like self-adaptive architectures, offer good maintenance properties but do not scale well for large systems. On the contrary, decentralized approaches, like self-organising architectures, offer good scalability but are not maintainable: reconfiguration specifications are spread and often tangled with functional specifications. In order to address these issues, this paper presents an aspect-oriented autonomic reconfiguration approach where: (1) each subsystem is provided with self-management properties so it can evolve itself and the components that it is composed of; (2) self-management concerns are isolated and encapsulated into aspects, thus improving its reuse and maintenance. Povzetek: Predstavljen je pristop s samo-preoblikovanjem programske arhitekture.
Resumo:
Salamanca is cataloged as one of the most polluted cities in Mexico. In order to observe the behavior and clarify the influence of wind parameters on the Sulphur Dioxide (SO2) concentrations a Self-Organizing Maps (SOM) Neural Network have been implemented at three monitoring locations for the period from January 1 to December 31, 2006. The maximum and minimum daily values of SO2 concentrations measured during the year of 2006 were correlated with the wind parameters of the same period. The main advantages of the SOM Neural Network is that it allows to integrate data from different sensors and provide readily interpretation results. Especially, it is powerful mapping and classification tool, which others information in an easier way and facilitates the task of establishing an order of priority between the distinguished groups of concentrations depending on their need for further research or remediation actions in subsequent management steps. For each monitoring location, SOM classifications were evaluated with respect to pollution levels established by Health Authorities. The classification system can help to establish a better air quality monitoring methodology that is essential for assessing the effectiveness of imposed pollution controls, strategies, and facilitate the pollutants reduction.
Resumo:
Over the last ten years, Salamanca has been considered among the most polluted cities in México. This paper presents a Self-Organizing Maps (SOM) Neural Network application to classify pollution data and automatize the air pollution level determination for Sulphur Dioxide (SO2) in Salamanca. Meteorological parameters are well known to be important factors contributing to air quality estimation and prediction. In order to observe the behavior and clarify the influence of wind parameters on the SO2 concentrations a SOM Neural Network have been implemented along a year. The main advantages of the SOM is that it allows to integrate data from different sensors and provide readily interpretation results. Especially, it is powerful mapping and classification tool, which others information in an easier way and facilitates the task of establishing an order of priority between the distinguished groups of concentrations depending on their need for further research or remediation actions in subsequent management steps. The results show a significative correlation between pollutant concentrations and some environmental variables.
Resumo:
In the last years significant efforts have been devoted to the development of advanced data analysis tools to both predict the occurrence of disruptions and to investigate the operational spaces of devices, with the long term goal of advancing the understanding of the physics of these events and to prepare for ITER. On JET the latest generation of the disruption predictor called APODIS has been deployed in the real time network during the last campaigns with the new metallic wall. Even if it was trained only with discharges with the carbon wall, it has reached very good performance, with both missed alarms and false alarms in the order of a few percent (and strategies to improve the performance have already been identified). Since for the optimisation of the mitigation measures, predicting also the type of disruption is considered to be also very important, a new clustering method, based on the geodesic distance on a probabilistic manifold, has been developed. This technique allows automatic classification of an incoming disruption with a success rate of better than 85%. Various other manifold learning tools, particularly Principal Component Analysis and Self Organised Maps, are also producing very interesting results in the comparative analysis of JET and ASDEX Upgrade (AUG) operational spaces, on the route to developing predictors capable of extrapolating from one device to another.
Resumo:
The adaptation to the European Higher Education Area (EHEA) is becoming a great challenge for the University Community, especially for its teaching and research staff, which is involved actively in the teaching-learning process. It is also inducing a paradigm change for lecturers and students. Among the methodologies used for processes of teaching innovation, system thinking plays an important role when working mainly with mind maps, and is focused to highlighting the essence of the knowledge, allowing its visual representation. In this paper, a method for using these mind maps for organizing a particular subject is explained. This organization is completed with the definition of duration, precedence relationships and resources for each of these activities, as well as with their corresponding monitoring. Mind maps are generated by means of the MINDMANAGER package whilst Ms-PROJECT is used for establishing tasks relationships, durations, resources, and monitoring. Summarizing, a procedure and the necessary set of applications for self organizing and managing (timed) scheduled teaching tasks has been described in this paper.
Resumo:
Noise maps are usually represented as contour or isolines maps describing the sound levels in a region. Using this kind of representation the user can easily find the noise level assigned to every location in the map. But the acoustic calculations behind the map are not performed for every single location on it; they are only performed in a grid of receivers. The results in this calculation grid are interpolated to draw the isolines or contours. Therefore, the resolution of the calculation grid and the way it was created (rectangular, triangulated, random…) have an effect on the resulting map. In this paper we describe a smart iterative procedure to optimize the quality of the map at a really low additional computational cost, using self-adaptive grids for the acoustic calculations. These self-adaptive grids add new receivers to the sampling grid in those locations where they are expected to be more useful, so that the performance at the output of the interpolator is enhanced. Self-adaptive sampling grids can be used for minimizing the overall error of the map (improving its quality), or for reducing calculation times, and can be also applied selectively to target areas or contour lines. This can be done by the user customizing the maximum number of iterations, the number of new receivers for each iteration, the target isolines, the target quality…
Resumo:
The adaptation to the European Higher Education Area (EHEA) is becoming a great challenge for the University Community, especially for its teaching and research staff, which is involved actively in the teaching-learning process. It is also inducing a paradigm change for lecturers and students. Among the methodologies used for processes of teaching innovation, system thinking plays an important role when working mainly with mind maps, and is focused to highlighting the essence of the knowledge, allowing its visual representation. In this paper, a method for using these mind maps for organizing a particular subject is explained. This organization is completed with the definition of duration, precedence relationships and resources for each of these activities, as well as with their corresponding monitoring. Mind maps are generated by means of the MINDMANAGER package whilst Ms-PROJECT is used for establishing tasks relationships, durations, resources, and monitoring. Summarizing, a procedure and the necessary set of applications for self organizing and managing (timed) scheduled teaching tasks has been described in this paper
Self assembled and ordered group III nitride nanocolumnar structures for light emitting applications
Resumo:
El objetivo de este trabajo es un estudio profundo del crecimiento selectivo de nanoestructuras de InGaN por epitaxia de haces moleculares asistido por plasma, concentrandose en el potencial de estas estructuras como bloques constituyentes en LEDs de nueva generación. Varias aproximaciones al problema son discutidas; desde estructuras axiales InGaN/GaN, a estructuras core-shell, o nanoestructuras crecidas en sustratos con orientaciones menos convencionales (semi polar y no polar). La primera sección revisa los aspectos básicos del crecimiento auto-ensamblado de nanocolumnas de GaN en sustratos de Si(111). Su morfología y propiedades ópticas son comparadas con las de capas compactas de GaN sobre Si(111). En el caso de las columnas auto-ensambladas de InGaN sobre Si(111), se presentan resultados sobre el efecto de la temperatura de crecimiento en la incorporación de In. Por último, se discute la inclusión de nanodiscos de InGaN en las nanocolumnas de GaN. La segunda sección revisa los mecanismos básicos del crecimiento ordenado de nanoestructuras basadas en GaN, sobre templates de GaN/zafiro. Aumentando la relación III/V localmente, se observan cambios morfológicos; desde islas piramidales, a nanocolumnas de GaN terminadas en planos semipolares, y finalmente, a nanocolumnas finalizadas en planos c polares. Al crecer nanodiscos de InGaN insertados en las nanocolumnas de GaN, las diferentes morfologias mencionadas dan lugar a diferentes propiedades ópticas de los nanodiscos, debido al diferente carácter (semi polar o polar) de los planos cristalinos involucrados. La tercera sección recoge experimentos acerca de los efectos que la temperatura de crecimiento y la razón In/Ga tienen en la morfología y emisión de nanocolumnas ordenadas de InGaN crecidas sobre templates GaN/zafiro. En el rango de temperaturas entre 650 y 750 C, la incorporacion de In puede modificarse bien por la temperatura de crecimiento, o por la razón In/Ga. Controlar estos factores permite la optimización de la longitud de onda de emisión de las nanocolumnas de InGaN. En el caso particular de la generación de luz blanca, se han seguidos dos aproximaciones. En la primera, se obtiene emisión amarilla-blanca a temperatura ambiente de nanoestructuras donde la región de InGaN consiste en un gradiente de composiciones de In, que se ha obtenido a partir de un gradiente de temperatura durante el crecimiento. En la segunda, el apilamiento de segmentos emitiendo en azul, verde y rojo, consiguiendo la integración monolítica de estas estructuras en cada una de las nanocolumnas individuales, da lugar a emisores ordenados con un amplio espectro de emisión. En esta última aproximación, la forma espectral puede controlarse con la longitud (duración del crecimiento) de cada uno de los segmentos de InGaN. Más adelante, se presenta el crecimiento ordenado, por epitaxia de haces moleculares, de arrays de nanocolumnas que son diodos InGaN/GaN cada una de ellas, emitiendo en azul (441 nm), verde (502 nm) y amarillo (568 nm). La zona activa del dispositivo consiste en una sección de InGaN, de composición constante nominalmente y longitud entre 250 y 500 nm, y libre de defectos extendidos en contraste con capas compactas de InGaN de similares composiciones y espesores. Los espectros de electroluminiscencia muestran un muy pequeño desplazamiento al azul al aumentar la corriente inyectada (desplazamiento casi inexistente en el caso del dispositivo amarillo), y emisiones ligeramente más anchas que en el caso del estado del arte en pozos cuánticos de InGaN. A continuación, se presenta y discute el crecimiento ordenado de nanocolumnas de In(Ga)N/GaN en sustratos de Si(111). Nanocolumnas ordenadas emitiendo desde el ultravioleta (3.2 eV) al infrarrojo (0.78 eV) se crecieron sobre sustratos de Si(111) utilizando una capa compacta (“buffer”) de GaN. La morfología y eficiencia de emisión de las nanocolumnas emitiendo en el rango espectral verde pueden ser mejoradas ajustando las relaciones In/Ga y III/N, y una eficiencia cuántica interna del 30% se deriva de las medidas de fotoluminiscencia en nanocolumnas optimizadas. En la siguiente sección de este trabajo se presenta en detalle el mecanismo tras el crecimiento ordenado de nanocolumnas de InGaN/GaN emitiendo en el verde, y sus propiedades ópticas. Nanocolumnas de InGaN/GaN con secciones largas de InGaN (330-830 nm) se crecieron tanto en sustratos GaN/zafiro como GaN/Si(111). Se encuentra que la morfología y la distribución espacial del In dentro de las nanocolumnas dependen de las relaciones III/N e In/Ga locales en el frente de crecimiento de las nanocolumnas. La dispersión en el contenido de In entre diferentes nanocolumnas dentro de la misma muestra es despreciable, como indica las casi identicas formas espectrales de la catodoluminiscencia de una sola nanocolumna y del conjunto de ellas. Para las nanocolumnas de InGaN/GaN crecidas sobre GaN/Si(111) y emitiendo en el rango espectral verde, la eficiencia cuántica interna aumenta hasta el 30% al disminuir la temperatura de crecimiento y aumentar el nitrógeno activo. Este comportamiento se debe probablemente a la formación de estados altamente localizados, como indica la particular evolución de la energía de fotoluminiscencia con la temperatura (ausencia de “s-shape”) en muestras con una alta eficiencia cuántica interna. Por otro lado, no se ha encontrado la misma dependencia entre condiciones de crecimiento y efiencia cuántica interna en las nanoestructuras InGaN/GaN crecidas en GaN/zafiro, donde la máxima eficiencia encontrada ha sido de 3.7%. Como alternativa a las nanoestructuras axiales de InGaN/GaN, la sección 4 presenta resultados sobre el crecimiento y caracterización de estructuras core-shell de InGaN/GaN, re-crecidas sobre arrays de micropilares de GaN fabricados por ataque de un template GaN/zafiro (aproximación top-down). El crecimiento de InGaN/GaN es conformal, con componentes axiales y radiales en el crecimiento, que dan lugar a la estructuras core-shell con claras facetas hexagonales. El crecimiento radial (shell) se ve confirmado por medidas de catodoluminiscencia con resolución espacial efectuadas en un microscopio electrónico de barrido, asi como por medidas de microscopía de transmisión de electrones. Más adelante, el crecimiento de micro-pilares core-shell de InGaN se realizó en pilares GaN (cores) crecidos selectivamente por epitaxia de metal-orgánicos en fase vapor. Con el crecimiento de InGaN se forman estructuras core-shell con emisión alrededor de 3 eV. Medidas de catodoluminiscencia resuelta espacialmente indican un aumento en el contenido de indio del shell en dirección a la parte superior del pilar, que se manifiesta en un desplazamiento de la emisión de 3.2 eV en la parte inferior, a 3.0 eV en la parte superior del shell. Este desplazamiento está relacionado con variaciones locales de la razón III/V en las facetas laterales. Finalmente, se demuestra la fabricación de una estructura pin basada en estos pilares core-shell. Medidas de electroluminiscencia resuelta espacialmente, realizadas en pilares individuales, confirman que la electroluminiscencia proveniente del shell de InGaN (diodo lateral) está alrededor de 3.0 eV, mientras que la emisión desde la parte superior del pilar (diodo axial) está alrededor de 2.3 eV. Para finalizar, se presentan resultados sobre el crecimiento ordenado de GaN, con y sin inserciones de InGaN, en templates semi polares (GaN(11-22)/zafiro) y no polares (GaN(11-20)/zafiro). Tras el crecimiento ordenado, gran parte de los defectos presentes en los templates originales se ven reducidos, manifestándose en una gran mejora de las propiedades ópticas. En el caso de crecimiento selectivo sobre templates con orientación GaN(11-22), no polar, la formación de nanoestructuras con una particular morfología (baja relación entre crecimiento perpedicular frente a paralelo al plano) permite, a partir de la coalescencia de estas nanoestructuras, la fabricación de pseudo-templates no polares de GaN de alta calidad. ABSTRACT The aim of this work is to gain insight into the selective area growth of InGaN nanostructures by plasma assisted molecular beam epitaxy, focusing on their potential as building blocks for next generation LEDs. Several nanocolumn-based approaches such as standard axial InGaN/GaN structures, InGaN/GaN core-shell structures, or InGaN/GaN nanostructures grown on semi- and non-polar substrates are discussed. The first section reviews the basics of the self-assembled growth of GaN nanocolumns on Si(111). Morphology differences and optical properties are compared to those of GaN layer grown directly on Si(111). The effects of the growth temperature on the In incorporation in self-assembled InGaN nanocolumns grown on Si(111) is described. The second section reviews the basic growth mechanisms of selectively grown GaNbased nanostructures on c-plane GaN/sapphire templates. By increasing the local III/V ratio morphological changes from pyramidal islands, to GaN nanocolumns with top semi-polar planes, and further to GaN nanocolumns with top polar c-planes are observed. When growing InGaN nano-disks embedded into the GaN nanocolumns, the different morphologies mentioned lead to different optical properties, due to the semipolar and polar nature of the crystal planes involved. The third section reports on the effect of the growth temperature and In/Ga ratio on the morphology and light emission characteristics of ordered InGaN nanocolumns grown on c-plane GaN/sapphire templates. Within the growth temperature range of 650 to 750oC the In incorporation can be modified either by the growth temperature, or the In/Ga ratio. Control of these factors allows the optimization of the InGaN nanocolumns light emission wavelength. In order to achieve white light emission two approaches are used. First yellow-white light emission can be obtained at room temperature from nanostructures where the InGaN region is composition-graded by using temperature gradients during growth. In a second approach the stacking of red, green and blue emitting segments was used to achieve the monolithic integration of these structures in one single InGaN nanocolumn leading to ordered broad spectrum emitters. With this approach, the spectral shape can be controlled by changing the thickness of the respective InGaN segments. Furthermore the growth of ordered arrays of InGaN/GaN nanocolumnar light emitting diodes by molecular beam epitaxy, emitting in the blue (441 nm), green (502 nm), and yellow (568 nm) spectral range is reported. The device active region, consisting of a nanocolumnar InGaN section of nominally constant composition and 250 to 500 nm length, is free of extended defects, which is in strong contrast to InGaN layers (planar) of similar composition and thickness. Electroluminescence spectra show a very small blue shift with increasing current, (almost negligible in the yellow device) and line widths slightly broader than those of state-of-the-art InGaN quantum wells. Next the selective area growth of In(Ga)N/GaN nanocolumns on Si(111) substrates is discussed. Ordered In(Ga)N/GaN nanocolumns emitting from ultraviolet (3.2 eV) to infrared (0.78 eV) were then grown on top of GaN-buffered Si substrates. The morphology and the emission efficiency of the In(Ga)N/GaN nanocolumns emitting in the green could be substantially improved by tuning the In/Ga and total III/N ratios, where an estimated internal quantum efficiency of 30 % was derived from photoluminescence data. In the next section, this work presents a study on the selective area growth mechanisms of green-emitting InGaN/GaN nanocolumns and their optical properties. InGaN/GaN nanocolumns with long InGaN sections (330-830nm) were grown on GaN/sapphire and GaN-buffered Si(111). The nanocolumn’s morphology and spatial indium distribution is found to depend on the local group (III)/N and In/Ga ratios at the nanocolumn’s top. A negligible spread of the average indium incorporation among different nanostructures is found as indicated by similar shapes of the cathodoluminescence spectra taken from single nanocolumns and ensembles of nanocolumns. For InGaN/GaN nanocolumns grown on GaN-buffered Si(111), all emitting in the green spectral range, the internal quantum efficiency increases up to 30% when decreasing growth temperature and increasing active nitrogen. This behavior is likely due to the formation of highly localized states, as indicated by the absence of a complete s-shape behavior of the PL peak position with temperature (up to room temperature) in samples with high internal quantum efficiency. On the other hand, no dependence of the internal quantum efficiency on the growth conditions is found for InGaN/GaN nanostructures grown on GaN/sapphire, where the maximum achieved efficiency is 3.7%. As alternative to axial InGaN/GaN nanostructures, section 4 reports on the growth and characterization of InGaN/GaN core-shell structures on an ordered array of top-down patterned GaN microrods etched from a GaN/sapphire template. Growth of InGaN/GaN is conformal, with axial and radial growth components leading to core-shell structures with clear hexagonal facets. The radial InGaN growth (shell) is confirmed by spatially resolved cathodoluminescence performed in a scanning electron microscopy as well as in scanning transmission electron microscopy. Furthermore the growth of InGaN core-shell micro pillars using an ordered array of GaN cores grown by metal organic vapor phase epitaxy as a template is demonstrated. Upon InGaN overgrowth core-shell structures with emission at around 3.0 eV are formed. With spatially resolved cathodoluminescence, an increasing In content towards the pillar top is found to be present in the InGaN shell, as indicated by a shift of CL peak position from 3.2 eV at the shell bottom to 3.0 eV at the shell top. This shift is related to variations of the local III/V ratio at the side facets. Further, the successful fabrication of a core-shell pin diode structure is demonstrated. Spatially resolved electroluminescence measurements performed on individual micro LEDs, confirm emission from the InGaN shell (lateral diode) at around 3.0 eV, as well as from the pillar top facet (axial diode) at around 2.3 eV. Finally, this work reports on the selective area growth of GaN, with and without InGaN insertion, on semi-polar (11-22) and non-polar (11-20) templates. Upon SAG the high defect density present in the GaN templates is strongly reduced as indicated by TEM and a dramatic improvement of the optical properties. In case of SAG on non-polar (11-22) templates the formation of nanostructures with a low aspect ratio took place allowing for the fabrication of high-quality, non-polar GaN pseudo-templates by coalescence of the nanostructures.