6 resultados para Grottaferrata, Italy. Esposizione italo-bisantina, 1905.
em Universidad Politécnica de Madrid
Resumo:
CO2 Emission from two old mine drillings (Mt. Amiata, Central Italy) as a possible example of storage and leakage of deep-seated CO2
Resumo:
Along the Apulian Adriatic coast, in a cliff south of Trani, a succession of three units (superimposed on one another) of marine and/or paralic environments has been recognised. The lowest unit I is characterised by calcareous/siliciclastic sands (css), micritic limestones (ml), stromatolitic and characean boundstones (scb), characean calcarenites (cc). The sedimentary environment merges from shallow marine, with low energy and temporary episodes of subaerial exposure, to lagoonal with a few exchanges with the sea. The lagoonal stromatolites (scb subunit) grew during a long period of relative stability of a high sea level in tropical climate. The unit I is truncated at the top by an erosion surface on which the unit II overlies; this consists of a basal pebble lag (bpl), silicicla - stic sands (ss), calcareous sands (cs), characean boundstones (cb), brown paleosol (bp). The sedimentary environment varies from beach to lagoon with salinity variations. Although there are indications of seismic events within the subunits cs, unit II deposition took place in a context of relative stability. The unit II is referable to a sea level highstand. Unit III, trangressive on the preceding, consists of white calcareous sands (wcs), calcareous sands and calcarenites (csc), phytoclastic calcirudite and phytohermal travertine (pcpt), mixed deposits (csl, m, k, c), sands (s) and red/brown paleosols (rbp). The sedimentation of this unit was affected by synsedimentary tectonic, attested by seismites found at several heights. Also the unit III is referable to a sea level highstand. The scientific literature has so far generally attributed to the Tyrrhenian (auct.) the deposits of Trani cliff. As part of this work some datings were performed on 10 samples, using the amino acid racemization method (AAR) applied to ostracod carapaces. Four of these samples have been rejected because they have shown in laboratory recent contamination. The numerical ages indicate that the deposits of the Trani cliff are older than MIS 5. The upper part of the unit I has been dated to 355±85 ka BP, thus allowing to assign the lowest stromatolitic subunit (scb) at the MIS 11 peak and the top of the unit I at the MIS 11-MIS 10 interval. The base of the unit II has been dated to 333±118 ka BP, thus attributing the erosion surface that bounds the units I and II to the MIS 10 lowstand and the lower part of the unit II to MIS 9.3. The upper part of the unit II has been dated to 234±35 ka BP, while three other numerical ages come from unit III: 303±35, 267±51, 247±61 ka BP. At present, the numerical ages cannot distinguish the sedimentation ages of units II and III, which are both related to the MIS 9.3- MIS 7.1 time range. However, the position of the units, superimposed one another, and their respective age, allows us to recognise a subsidence phase between MIS 11 and MIS 7, followed by an uplift phase between the MIS 7 and the present day, which led the deposits in their current position. This tectonic pattern is not in full agreement with what is described in the literature for the Apulian foreland.
Resumo:
The Mt. Amiata volcano (Tuscany, central Italy) hosts the second largest geothermal field of Italy. Its SW and NE sectors are characterized by the presence of several CO2-rich (mayor que95% by vol.) gas discharges. An intense Hg mining activity had taken place from the 19th century up to the end of the ?70s, particularly close to Abbadia San Salvatore, during which two drillings (Acqua Passante and Ermeta) intercepted a CO2-rich gas fertile horizon. The related gases are emitted in the atmosphere since 1938 and 1959, respectively, causing severe concerns for the local air quality. In this work the results of a geochemical and isotopic survey carried out on these gas emissions from March 2009 to January 2014 are presented. CO2 fluxes from both the two wells and soil from an area of about 653,500 m2 located between them were measured. The two wells are emitting up to 15,000, 92 and 8 tons y-1 of CO2, CH4 and H2S, respectively, while the computed soil CO2 output was estimated at 4,311 ton y-1. The spatial distribution of the CO2 soil flux suggests the presence of preferential patterns, indicating sites of higher permeability. Since the local municipality is evaluating the possibility to plug the Ermeta vent, a temporarily closure should first be carried out to test the possible influence of this operation on the diffuse soil degassing of deep-originated CO2 in the surrounding area. This implies that diffuse soil gases should carefully be monitored before proceeding with its definitive closure.
Resumo:
A BOX OPEN TO THE SKY = UNA CAJA ABIERTA AL CIELO
Resumo:
This house was born in response to an international competition organized in Italy; la Casa piú bella del Mondo (the most beautiful house in the world).
Resumo:
En la presente investigación se analiza la causa del hundimiento del cuarto compartimento del Tercer Depósito del Canal de Isabel II el 8 de abril de 1905, uno de los más graves de la historia de la construcción en España: fallecieron 30 personas y quedaron heridas otras 60. El Proyecto y Construcción de esta estructura era de D. José Eugenio Ribera, una de las grandes figuras de la ingeniería civil en nuestro país, cuya carrera pudo haber quedado truncada como consecuencia del siniestro. Dado el tiempo transcurrido desde la ocurrencia de este accidente, la investigación ha partido de la recopilación de la información relativa al Proyecto y a la propia construcción de la estructura, para revisar a continuación la información disponible sobre el hundimiento. De la construcción de la cubierta es interesante destacar la atrevida configuración estructural, cubriéndose una inmensa superficie de 74.000 m2 mediante una sucesión de bóvedas de hormigón armado de tan sólo 5 cm de espesor y un rebajamiento de 1/10 para salvar una luz de 6 m, que apoyaban en pórticos del mismo material, con pilares también muy esbeltos: 0,25 m de lado para 8 m de altura. Y todo ello en una época en la que la tecnología y conocimiento de las estructuras con este "nuevo" material se basaban en buena medida en el desarrollo de patentes. En cuanto a la información sobre el hundimiento, llama la atención en primer lugar la relevancia de los técnicos, peritos y letrados que intervinieron en el juicio y en el procedimiento administrativo posterior, poniéndose de manifiesto la trascendencia que el accidente tuvo en su momento y que, sin embargo, no ha trascendido hasta nuestros días. Ejemplo de ello es el papel de Echegaray -primera figura intelectual de la época- como perito en la defensa de Ribera, de D. Melquiades Álvarez -futuro presidente del Congreso- como abogado defensor, el General Marvá -uno de los máximos exponentes del papel de los ingenieros militares en la introducción del hormigón armado en nuestro país-, que presidiría la Comisión encargada del peritaje por parte del juzgado, o las opiniones de reconocidas personalidades internacionales del "nuevo" material como el Dr. von Emperger o Hennebique. Pero lo más relevante de dicha información es la falta de uniformidad sobre lo que pudo ocasionar el hundimiento: fallos en los materiales, durante la construcción, defectos en el diseño de la estructura, la realización de unas pruebas de carga cuando se concluyó ésta, etc. Pero la que durante el juicio y en los Informes posteriores se impuso como causa del fallo de la estructura fue su dilatación como consecuencia de las altas temperaturas que se produjeron aquella primavera. Y ello a pesar de que el hundimiento ocurrió a las 7 de la mañana... Con base en esta información se ha analizado el comportamiento estructural de la cubierta, permitiendo evaluar el papel que diversos factores pudieron tener en el inicio del hundimiento y en su extensión a toda la superficie construida, concluyéndose así cuáles fueron las causas del siniestro. De los resultados obtenidos se presta especial atención a las enseñanzas que se desprenden de la ocurrencia del hundimiento, enfatizándose en la relevancia de la historia -y en particular de los casos históricos de error- para la formación continua que debe existir en la Ingeniería. En el caso del hundimiento del Tercer Depósito algunas de estas "enseñanzas" son de plena actualidad, tales como la importancia de los detalles constructivos en la "robustez" de la estructuras, el diseño de estructuras "integrales" o la vigilancia del proceso constructivo. Por último, la investigación ha servido para recuperar, una vez más, la figura de D. José Eugenio Ribera, cuyo papel en la introducción del hormigón armado en España fue decisivo. En la obra del Tercer Depósito se arriesgó demasiado, y provocó un desastre que aceleró la transición hacia una nueva etapa en el hormigón estructural al abrigo de un mayor conocimiento científico y de las primeras normativas. También en esta etapa sería protagonista. This dissertation analyses the cause of the collapse of the 4th compartment of the 3th Reservoir of Canal de Isabel II in Madrid. It happened in 1905, on April 8th, being one of the most disastrous accidents occurred in the history of Spanish construction: 30 people died and 60 were injured. The design and construction supervision were carried out by D. José Eugenio Ribera, one of the main figures in Civil Engineering of our country, whose career could have been destroyed as a result of this accident. Since it occurred more than 100 years ago, the investigation started by compiling information about the structure`s design and construction, followed by reviewing the available information about the accident. With regard to the construction, it is interesting to point out its daring structural configuration. It covered a huge area of 74.000 m2 with a series of reinforced concrete vaults with a thickness of not more than 5 cm, a 6 m span and a rise of 1/10th. In turn, these vaults were supported by frames composed of very slender 0,25 m x 0,25 m columns with a height of 8 m. It is noteworthy that this took place in a time when the technology and knowledge about this "new" material was largely based on patents. In relation to the information about the collapse, its significance is shown by the important experts and lawyers that were involved in the trial and the subsequent administrative procedure. For example, Echegaray -the most important intellectual of that time- defended Ribera, Melquiades Álvarez –the future president of the Congress- was his lawyer, and General Marvá -who represented the important role of the military engineers in the introduction of reinforced concrete in our country-, led the Commission that was put in charge by the judge of the root cause analysis. In addition, the matter caught the interest of renowned foreigners like Dr. von Emperger or Hennebique and their opinions had a great influence. Nonetheless, this structural failure is unknown to most of today’s engineers. However, what is most surprising are the different causes that were claimed to lie at the root of the disaster: material defects, construction flaws, errors in the design, load tests performed after the structure was finished, etc. The final cause that was put forth during the trial and in the following reports was attributed to the dilatation of the roof due to the high temperatures that spring, albeit the collapse occurred at 7 AM... Based on this information the structural behaviour of the roof has been analysed, which allowed identifying the causes that could have provoked the initial failure and those that could have led to the global collapse. Lessons have been learned from these results, which points out the relevance of history -and in particular, of examples gone wrong- for the continuous education that should exist in engineering. In the case of the 3th Reservoir some of these lessons are still relevant during the present time, like the importance of detailing in "robustness", the design of "integral" structures or the due consideration of construction methods. Finally, the investigation has revived, once again, the figure of D. José Eugenio Ribera, whose role in the introduction of reinforced concrete in Spain was crucial. With the construction of the 3th Reservoir he took too much risk and caused a disaster that accelerated the transition to a new era in structural concrete based on greater scientific knowledge and the first codes. In this new period he would also play a major role.