5 resultados para Gross pollutant

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salamanca is cataloged as one of the most polluted cities in Mexico. In order to observe the behavior and clarify the influence of wind parameters on the Sulphur Dioxide (SO2) concentrations a Self-Organizing Maps (SOM) Neural Network have been implemented at three monitoring locations for the period from January 1 to December 31, 2006. The maximum and minimum daily values of SO2 concentrations measured during the year of 2006 were correlated with the wind parameters of the same period. The main advantages of the SOM Neural Network is that it allows to integrate data from different sensors and provide readily interpretation results. Especially, it is powerful mapping and classification tool, which others information in an easier way and facilitates the task of establishing an order of priority between the distinguished groups of concentrations depending on their need for further research or remediation actions in subsequent management steps. For each monitoring location, SOM classifications were evaluated with respect to pollution levels established by Health Authorities. The classification system can help to establish a better air quality monitoring methodology that is essential for assessing the effectiveness of imposed pollution controls, strategies, and facilitate the pollutants reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper present an environmental contingency forecasting tool based on Neural Networks (NN). Forecasting tool analyzes every hour and daily Sulphur Dioxide (SO2) concentrations and Meteorological data time series. Pollutant concentrations and meteorological variables are self-organized applying a Self-organizing Map (SOM) NN in different classes. Classes are used in training phase of a General Regression Neural Network (GRNN) classifier to provide an air quality forecast. In this case a time series set obtained from Environmental Monitoring Network (EMN) of the city of Salamanca, Guanajuato, México is used. Results verify the potential of this method versus other statistical classification methods and also variables correlation is solved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a method based mainly on Data Fusion and Artificial Neural Networks to classify one of the most important pollutants such as Particulate Matter less than 10 micrometer in diameter (PM10) concentrations is proposed. The main objective is to classify in two pollution levels (Non-Contingency and Contingency) the pollutant concentration. Pollutant concentrations and meteorological variables have been considered in order to build a Representative Vector (RV) of pollution. RV is used to train an Artificial Neural Network in order to classify pollutant events determined by meteorological variables. In the experiments, real time series gathered from the Automatic Environmental Monitoring Network (AEMN) in Salamanca Guanajuato Mexico have been used. The method can help to establish a better air quality monitoring methodology that is essential for assessing the effectiveness of imposed pollution controls, strategies, and facilitate the pollutants reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de esta investigación es desarrollar una metodología para estimar los potenciales impactos económicos y de transporte generados por la aplicación de políticas en el sector transporte. Los departamentos de transporte y otras instituciones gubernamentales relacionadas se encuentran interesadas en estos análisis debido a que son presentados comúnmente de forma errónea por la insuficiencia de datos o por la falta de metodologías adecuadas. La presente investigación tiene por objeto llenar este vacío haciendo un análisis exhaustivo de las técnicas disponibles que coincidan con ese propósito. Se ha realizado un análisis que ha identificado las diferencias cuando son aplicados para la valoración de los beneficios para el usuario o para otros efectos como aspectos sociales. Como resultado de ello, esta investigación ofrece un enfoque integrado que incluye un modelo Input-Output de múltiples regiones basado en la utilidad aleatoria (RUBMRIO), y un modelo de red de transporte por carretera. Este modelo permite la reproducción con mayor detalle y realismo del transporte de mercancías que por medio de su estructura sectorial identifica los vínculos de las compras y ventas inter-industriales dentro de un país utilizando los servicios del transporte de mercancías. Por esta razón, el modelo integrado es aplicable a diversas políticas de transporte. En efecto, el enfoque se ha aplicado para estudiar los efectos macroeconómicos regionales de la implementación de dos políticas diferentes en el sistema de transporte de mercancías de España, tales como la tarificación basada en la distancia recorrida por vehículo-kilómetro (€/km) aplicada a los vehículos del transporte de mercancías, y para la introducción de vehículos más largos y pesados de mercancías en la red de carreteras de España. El enfoque metodológico se ha evaluado caso por caso teniendo en cuenta una selección de la red de carreteras que unen las capitales de las regiones españolas. También se ha tenido en cuenta una dimensión económica a través de una tabla Input-Output de múltiples regiones (MRIO) y la base de datos de conteo de tráfico existente para realizar la validación del modelo. El enfoque integrado reproduce las condiciones de comercio observadas entre las regiones usando el sistema de transporte de mercancías por carretera, y que permite por comparación con los escenarios de políticas, determinar las contribuciones a los cambios distributivos y generativos. Así pues, el análisis estima los impactos económicos en cualquier región considerando los cambios en el Producto Interno Bruto (PIB) y el empleo. El enfoque identifica los cambios en el sistema de transporte a través de todos los caminos de la red de transporte a través de las medidas de efectividad (MOEs). Los resultados presentados en esta investigación proporcionan evidencia sustancial de que en la evaluación de las políticas de transporte, es necesario establecer un vínculo entre la estructura económica de las regiones y de los servicios de transporte. Los análisis muestran que para la mayoría de las regiones del país, los cambios son evidentes para el PIB y el empleo, ya que el comercio se fomenta o se inhibe. El enfoque muestra cómo el tráfico se desvía en ambas políticas, y también determina detalles de las emisiones de contaminantes en los dos escenarios. Además, las políticas de fijación de precios o de regulación de los sistemas de transporte de mercancías por carretera dirigidas a los productores y consumidores en las regiones promoverán transformaciones regionales afectando todo el país, y esto conduce a conclusiones diferentes. Así mismo, este enfoque integrado podría ser útil para evaluar otras políticas y otros países en todo el mundo. The purpose of this research is to develop a methodological approach aimed at assessing the potential economic and transportation impacts of transport policies. Transportation departments and other related government parties are interested in such analysis because it is commonly misrepresented for the insufficiency of data and suitable methodologies available. This research is directed at filling this gap by making a comprehensive analysis of the available techniques that match with that purpose. The differences when they are applied for the valuation of user benefits or for other impacts as social matters have been identified. As a result, this research presents an integrated approach which includes both a random utility-based multiregional Input-Output model (RUBMRIO), and a road transport network model. This model accounts for freight transport with more detail and realism because its commodity-based structure traces the linkages of inter-industry purchases and sales that use freight services within a given country. For this reason, the integrated model is applicable to various transport policies. In fact, the approach is applied to study the regional macroeconomic effects of implementing two different policies in the freight transport system of Spain, such as a distance-based charge in vehicle-kilometer (€/km) for Heavy Goods Vehicles (HGVs), and the introduction of Longer and Heavier Vehicles (LHVs) in the road network of Spain. The methodological approach has been evaluated on a case by case basis considering a selected road network of highways linking the capitals of the Spanish regions. It has also considered an economic dimension through a Multiregional Input Output Table (MRIO) and the existing traffic count database used in the model validation. The integrated approach replicates observed conditions of trade among regions using road freight transport systems that determine contributions to distributional and generative changes by comparison with policy scenarios. Therefore, the model estimates economic impacts in any given area by considering changes in Gross Domestic Product (GDP), employment (jobs), and in the transportation system across all paths of the transport network considering Measures of effectiveness (MOEs). The results presented in this research provide substantive evidence that in the assessment of transport policies it is necessary to establish a link between the economic structure of regions and the transportation services. The analysis shows that for most regions in the country, GDP and employment changes are noticeable when trade is encouraged or discouraged. This approach shows how traffic is diverted in both policies, and also provides details of the pollutant emissions in both scenarios. Furthermore, policies, such as pricing or regulation of road freight transportation systems, directed to producers and consumers in regions will promote different regional transformations across the country, and this lead to different conclusions. In addition, this integrated approach could be useful to assess other policies and countries worldwide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pastures are among the most important ecosystems in Europe considering their biodiversity and dis- tribution area. However, their response to increasing tropospheric ozone (O 3 ) and nitrogen (N) deposi- tion, two of the main drivers of global change, is still uncertain. A new Open-Top Chamber (OTC) experiment was performed in central Spain, aiming to study annual pasture response to O 3 and N in close to natural growing conditions. A mixture of six species of three representative families was sowed in the fi eld. Plants were exposed for 40 days to four O 3 treatments: fi ltered air, non- fi ltered air (NFA) repro- ducing ambient levels and NFA supplemented with 20 and 40 nl l � 1 O 3 . Three N treatments were considered to reach the N integrated doses of “ background ” , þ 20 or þ 40 kg N ha � 1 . Ozone signi fi cantly reduced green and total aboveground biomass (maximum reduction 25%) and increased the senescent biomass (maximum increase 40%). Accordingly, O 3 decreased community Gross Primary Production due to both a global reduction of ecosystem CO 2 exchange and an increase of ecosystem respiration. Nitrogen could partially counterbalance O 3 effects on aboveground biomass when the levels of O 3 were moderate, but at the same time O 3 exposure reduced the fertilization effect of higher N availability. Therefore, O 3 must be considered as a stress factor for annual pastures in the Mediterranean areas.