53 resultados para Greenhouse gas emission
em Universidad Politécnica de Madrid
Resumo:
Greenhouse gas emission reduction is the pillar of the Kyoto Protocol and one of the main goals of the European Union (UE) energy policy. National reduction targets for EU member states and an overall target for the EU-15 (8%) were set by the Kyoto Protocol. This reduction target is based on emissions in the reference year (1990) and must be reached by 2012. EU energy policy does not set any national targets, only an overall reduction target of 20% by 2020. This paper transfers global greenhouse gas emission reduction targets in both these documents to the transport sector and specifically to CO2 emissions. It proposes a nonlinear distribution method with objective, dynamic targets for reducing CO2 emissions in the transport sector, according to the context and characteristics of each geographical area. First, we analyse CO2 emissions from transport in the reference year (1990) and their evolution from 1990 to 2007. We then propose a nonlinear methodology for distributing dynamic CO2 emission reduction targets. We have applied the proposed distribution function for 2012 and 2020 at two territorial levels (EU member states and Spanish autonomous regions). The weighted distribution is based on per capita CO2 emissions and CO2 emissions per gross domestic product. Finally, we show the weighted targets found for each EU member state and each Spanish autonomous region, compare them with the real achievements to date, and forecast the situation for the years the Kyoto and EU goals are to be met. The results underline the need for ?weighted? decentralised decisions to be made at different territorial levels with a view to achieving a common goal, so relative convergence of all the geographical areas is reached over time. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
Debido a la complejidad de los procesos que controlan el intercambio de gases de carbono (C) y nitrógeno (N) entre el suelo y la atmósfera, en los sistemas forestales y agroforestales, son comprensibles las incógnitas existentes respecto a la estimación de los flujos de los gases de efecto invernadero (GEI) y la capacidad como reservorios de carbono de los suelos, bajo diferentes formas de uso y regímenes de alteración a escala regional y global. Esta escasez de información justifica la necesidad de caracterizar la dinámica de intercambio de GEI en los ecosistemas Mediterráneos, en especial en el contexto actual de cambio climático, y el incremento asociado de temperatura y periodos de sequía, alteración de los patrones de precipitación, y el riesgo de incendios forestales; cuyas consecuencias afectarán tanto a los compartimentos de C y de N del suelo como a la capacidad de secuestro de C de estos ecosistemas. Dentro de este contexto se enmarca la presente tesis doctoral cuyo objetivo ha sido cuantificar y caracterizar los flujos de dióxido de carbono (CO2), de oxido nitroso (N2O) y de metano (CH4), junto con los stocks de C y N, en suelos forestales de Quercus ilex, Quercus pyrenaica y Pinus sylvestris afectados por incendios forestales; así como el estudiar el efecto de la gestión y la cubierta arbórea en la respiración del suelo y los stocks de C y N en una dehesa situada en el centro de la Península Ibérica. De manera que los flujos de CO2, N2O y CH4; y los parámetros físico-químicos y biológicos del suelo fueron estudiados en los diferentes tratamientos y ecosistemas a lo largo del trabajo que se presenta. Los resultados obtenidos muestran la existencia de variaciones temporales y espaciales de la respiración del suelo dentro de una escala geográfica pequeña, controladas principalmente por la temperatura y la humedad del suelo; y por los contenidos de C y N del suelo en un bosque de Pinus sylvestris en la vertiente norte de la Sierra de Guadarrama , en España. El análisis de los efectos de los incendios forestales a largo plazo (6-8 años) revela que las pérdidas anuales de C a través de la respiración del suelo en las zonas quemadas de Quercus ilex, Quercus pyrenaica y Pinus sylvestris fueron 450 gCm-2yr-1, 790 gCm-2yr-1 y 1220 gCm-2yr-1, respectivamente; lo que representa una reducción del 43%, 22% y 11% en comparación con las zonas no quemadas de dichas especies, debido a la destrucción de la masa arbórea. El efecto del fuego también alteró los flujos N2O y CH4 del suelo, de una forma diferente en los distintos ecosistemas y estacionalidades estudiadas. De tal modo, que los suelos quemados mostraron una mayor oxidación del CH4 en las masas de Q. ilex, y una menor oxidación en las de P. sylvestris; además de una disminución de los flujos de N2O en Q. pyrenaica. Los incendios también afectaron los parámetros microclimáticos de los suelos forestales, observándose un incremento de la temperatura del suelo y una disminución de la humedad en los emplazamientos quemados que en los no quemados. Los cationes intercambiables, el pH, el cociente C/N, el contenido en raicillas y la biomasa microbiana también disminuyeron en las zonas quemadas. Aunque el C orgánico del suelo no se alteró de manera significativa, si lo hizo la calidad de la materia orgánica, disminuyendo el carbono lábil y aumentando las formas recalcitrantes lo que se tradujo en menor sensibilidad de la respiración del suelo a la temperatura (valores de Q10) en las zonas quemadas. Los resultados del estudio realizado en la Dehesa muestran que las actividades silvopastorales estudiadas afectaron levemente y de forma no constante a la respiración del suelo y las condiciones microclimáticas del suelo. Se observó una reducción 12% de la respiración del suelo por efecto del pastoreo no intensivo. Sin embargo, se observaron incrementos de 3Mg/ha en los stocks de C y de 0.3 Mg/ha en los stocks de N en los suelos pastoreados en comparación con los no pastoreados. Aunque, no se observó un claro efecto de la labranza sobre la respiración del suelo en nuestro experimento, sin embargo si se observó una disminución de 3.5 Mg/ha en las reservas de C y de 0.3 Mg/ ha en las de N en los suelos labrados comparados con los no labrados. La copa del arbolado influyó de forma positiva tanto en la respiración del suelo, como en los stocks de C y N de los suelos. La humedad del suelo jugó un papel relevante en la sensibilidad de la respiración a la temperatura del suelo. Nuestros resultados ponen de manifiesto la sensibilidad de la respiración del suelo a cambios en la humedad y los parámetros edáficos, y sugieren que la aplicación de modelos estándar para estimar la respiración del suelo en áreas geográficas pequeñas puede no ser adecuada a menos que otros factores sean considerados en combinación con la temperatura del suelo. Además, las diferentes respuestas de los flujos de gases de efecto invernadero a los cambios, años después de la ocurrencia de incendios forestales, destaca la necesidad de incluir estos cambios en las futuras investigaciones de la dinámica del carbono en los ecosistemas mediterráneos. Por otra parte, las respuestas divergentes en los valores de respiración del suelo y en los contenidos de C y N del suelo observados en la dehesa, además de la contribución de la copa de los árboles en los nutrientes del suelo ilustran la importancia de mantener la gestión tradicional aplicada en beneficio de la capacidad de almacenar C en la dehesa estudiada. La información obtenida en este trabajo pretende contribuir a la mejora del conocimiento de la dinámica y el balance de C en los sistemas mediterráneos, además de ayudar a predecir el impacto del cambio climático en el intercambio de C entre los ecosistemas forestales y agroforestales y la atmósfera. ABSTRACT Due to the complexity of the processes that control the exchange of carbon (C) and nitrogen (N) gasses between soils and the atmosphere in forest and agroforestry ecosystems, understandable uncertainties exist as regards the estimation of greenhouse gas (GHG) fluxes and the soil sink capacity at regional and global scale under different forms of land use and disturbance regimes. These uncertainties justify the need to characterize the exchange dynamics of GHG between the atmosphere and soils in Mediterranean terrestrial ecosystems, particularly in the current context of climate change and the associated increase in temperature, drought periods, heavy rainfall events, and increased risk of wildfires, which affect not only the C and N pools but also the soil C sink capacity of these ecosystems. Within this context, the aims of the present thesis were, firstly, to quantify and characterize the fluxes of carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) as well as the C and N stocks in Quercus ilex, Quercus pyrenaica and Pinus sylvestris stands affected by wildfires, and secondly, to study the effects of Quercus ilex canopy and management on both soil respiration and C and N pools in dehesa systems in the center of Iberian Peninsula. Soil CO2, N2O and CH4 fluxes, and soil physical-chemical and biological parameters were studied under the different treatments and ecosystems considered in this study. The results showed seasonal and spatial variations in soil respiration within small geographic areas, mainly controlled by soil temperature and moisture in addition to soil carbon and nitrogen stocks in mixed pine–oak forest ecosystems on the north facing slopes of the Sierra de Guadarrama in Spain. The analysis of long term effects of wildfires (6–8 years) revealed that annual carbon losses through soil respiration from burned sites in Quercus ilex, Quercus pyrenaica and Pinus sylvestris stands were 450 gCm-2yr-1, 790 gCm-2yr-1 and 1220 gCm-2yr-1, respectively; with burned sites emitting 43%, 22% and 11% less in burned as opposed to non-burned sites due the loss of trees. Fire may alter both N2O and CH4 fluxes although the magnitude of such variation depends on the site, soil characteristics and seasonal climatic conditions. The burned sites showed higher CH4 oxidation in Q.ilex stands, and lower oxidation rates in P. sylvestris stands. A reduction in N2O fluxes in Q. pyrenaica stands was detected at burned sites along with changes in soil microclimate; higher soil temperature and lower soil moisture content. Exchangeable cations, the C/N ratio, pH, fine root and microbial biomass were also found to decrease at burned sites. Although the soil organic carbon was not significantly altered, the quality of the organic matter changed, displaying a decrease in labile carbon and a relative increase in refractory forms, leading to lower sensitivity of soil respiration to temperature (Q10 values) at burned sites. The results from the dehesa study show that light grazing and superficial tilling practices used in the studied dehesa system in Spain had a slight but non-consistent impact on soil respiration and soil microclimate over the study period. The reduction in soil respiration in the dehesa system due to the effects of grazing was around 12 %. However, increments of 3Mg/ha in C stocks and 0.3 Mg/ha in N stocks in grazed soils were observed. Although no clear effect of tilling on soil respiration was found, a decrease of 3.5 Mg/ha in C stocks and 0.3 Mg/ha in N stocks was detected for tilled soils. The presence of a tree canopy induced increases in soil respiration, soil C and N stocks, while soil moisture was found to play an important role in soil respiration temperature response. Our results suggest that the use of standard models to estimate soil respiration in small geographical areas may not be adequate unless other factors are considered in addition to soil temperature. Furthermore, the different responses of GHG flux to climatic shifts, many years after the occurrence of wildfire, highlight the need to include these shifts in C dynamics in future research undertaken in Mediterranean ecosystems. Furthermore, divergent responses in soil respiration and soil C and N stocks to grazing or tilling practices in Dehesa systems, and the influence of tree canopy on soil respiration and soil nutrient content, illustrate the importance of maintaining beneficial management practices. Moreover, the carbon sequestration capacity of the Dehesa system studied may be enhanced through improvements in the management applied. It is hoped that the information obtained through this research will contribute towards improving our understanding of the dynamics and balance of C in Mediterranean systems, and help predict the impact of climate change on the exchange of C between forest and agroforestry ecosystems and the atmosphere.
Resumo:
Carbon (C) and nitrogen (N) process-based models are important tools for estimating and reporting greenhouse gas emissions and changes in soil C stocks. There is a need for continuous evaluation, development and adaptation of these models to improve scientific understanding, national inventories and assessment of mitigation options across the world. To date, much of the information needed to describe different processes like transpiration, photosynthesis, plant growth and maintenance, above and below ground carbon dynamics, decomposition and nitrogen mineralization. In ecosystem models remains inaccessible to the wider community, being stored within model computer source code, or held internally by modelling teams. Here we describe the Global Research Alliance Modelling Platform (GRAMP), a web-based modelling platform to link researchers with appropriate datasets, models and training material. It will provide access to model source code and an interactive platform for researchers to form a consensus on existing methods, and to synthesize new ideas, which will help to advance progress in this area. The platform will eventually support a variety of models, but to trial the platform and test the architecture and functionality, it was piloted with variants of the DNDC model. The intention is to form a worldwide collaborative network (a virtual laboratory) via an interactive website with access to models and best practice guidelines; appropriate datasets for testing, calibrating and evaluating models; on-line tutorials and links to modelling and data provider research groups, and their associated publications. A graphical user interface has been designed to view the model development tree and access all of the above functions.
Resumo:
Pig’s slurry is a key source of greenhouse gases (GHG). In Spain, GHG emissions (CH4+ N2O) from pig slurry (storage and land application) accounted in 2011 for 18.4% of total GHG emissions (in CO2- equivalent) of the agriculture sector according to the National Inventory Report (NIR). Slurry composition can be modified through diet manipulation. The aim of this work was to evaluate the effect of different fibre types in fattening pigs’ diets on GHG emissions from pig slurry storage and field application.
Resumo:
Intensive farm systems handle large volume of livestock wastes, resulting in adverse environmental effects, such as gaseous losses into the atmosphere in form of ammonia (NH3) and greenhouse gases (GHG), i.e. methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O). In this study, the manure management continuum of slurry storage with impermeable cover and following cattle slurry band spreading and incorporation to soil was assessed for NH3 and GHG emissions. The experiment was conducted in an outdoor covered storage (flexible bag system) (study I), which collected the slurry produced in 7 dairy cattle farms (2,000 m3 slurry) during 12 days in the northern Spain.
Resumo:
Geological storage of CO2 is nowadays internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize its effects on the global climatology. One of the main options is to store the CO2 in deep saline aquifers at more than 800 m depth, because it achieves its supercritical state. Among the most important aspects concerning the performance assessment of a deep CO2 geological repository is the evaluation of the CO2 leakage rate from the chosen storage geological formation. Therefore, it is absolutely necessary to increase the knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths for CO2 and the physico-mechanical resistance of the sealing formation. Furthermore, the quantification of the CO2 leakage rate is essential to evaluate its effects on the environment. One way to achieve this objective is to study of CO2 leakage on natural analogue systems, because they can provide useful information about the natural performance of the CO2, which can be applied to an artificial CO2 geological storage. This work is focused on the retention capacity of the cap-rock by measuring the diffuse soil CO2 flux in a site selected based on: i) the presence of a natural and deep CO2 accumulation; ii) its structural geological characteristics; and iii) the nature of the cap-rocks. This site is located in the so-called Mazarrón-Gañuelas Tertiary Basin, in the Guadalentin Valley, province of Murcia (Spain) Therefore the main objective of this investigation has been to detect the possible leakages of CO2 from a deep saline aquifer to the surface in order to understand the capability of this area as a natural analogue for Carbon Capture and Sequestration (CCS). The results obtained allow to conclude that the geological sealing formation of the basin seems to be appropriate to avoid CO2 leakages from the storage formation.
Resumo:
Geological storage of CO2 is nowadays internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize its effects on the global climatology. One of the main options is to store CO2 in deep saline aquifers at more than 800m depth, because it reaches its supercritical state. Study of the CO2 natural accumulations as natural analogues of an artificial CO2 storage is very useful in order to understand the CO2 long term behaviour and thus to predict its possible impact on the surficial environment and life. Therefore the main objective of this work is to detect the affection of the CO2 leakages from a deep saline aquifer on the shallow aquifers, all of them located in the Gañuelas-Mazarrón Tertiary basin (Province of Murcia, Spain). This CO2 storage and leakage natural system can be analogous to an artificial CO2 storage with leakage phenomena. In order to reach these objectives, groundwaters from different aquifers in the site have been sampled and analysed for major elements, free and dissolved gases and stable isotopes, particularly ∂ 13 C and 3 He/ 4 He. The results obtained allow to conclude that this natural system is an interesting example of natural analogue for an artificial CO2 storage affected by leakage processes because the shallow fresh aquifers in the site are polluted by CO2 from the deep saline aquifer as a consequence of an intensive over-exploitation of these freshwater aquifers
Resumo:
Sterile coal is a low-value residue associated to the coal extraction and mining activity. According to the type and origin of the coal bed configuration, sterile coal production can mainly vary on quantity, calorific value and presence of sulphur compounds. In addition, the potential availability of sterile coal within Spain is apparently high and its contribution to the local power generation would be of interest playing a significant role. The proposed study evaluates the availability and deployment of gasification technologies to drive clean electricity generation from waste coal and sterile rock coal, incorporating greenhouse gas emission mitigation systems, like CO2, H2S and NOx removal systems. It establishes the target facility and its conceptual basic design proposal. The syngas obtained after the gasification of sterile coal is processed through specific conditioning units before entering into the combustion chamber of a gas turbine. Flue gas leaving the gas turbine is ducted to a heat recovery steam generation boiler; the steam produced within the boilerdrives a steam turbine. The target facility resembles a singular Integrated Gasification in Combined Cycle (IGCC) power station. The evaluation of the conceptual basic design according to the power output set for a maximum sterile contribution, established that rates over 95% H2S and 90% CO2 removal can be achieved. Noticeable decrease of NOx compounds can be also achieved by the use of commercial technology. A techno-economic approach of the conceptual basic design is made evaluating the integration of potential unitsand their implementation within the target facility aiming toachieve clean power generation. The criterion to be compliant with the most restrictive regulation regarding environmental emissions is setting to carry out this analysis.
Resumo:
Nitrous oxide (N2O) is the main greenhouse gas (GHG) produced by agricultural soils due to microbial processes. The application of N fertilizers is associated with an increase of N2O losses. However, it is possible to mitigate these emissions by the introduction of adequate management practices (Snyder et al., 2009). Soil conservation practices (i.e.no tillage, NT) have recently become widespread because they promote several positive effects (increases in soil organic carbonand soil fertility, reduction of soil erosion, etc). In terms of GHG emissions, there is no consensus in the literature on the effects of tillage on N2O. Several studies found that NT can produce greater (Baggs et al., 2003), lower (Malhi et al., 2006) or similar (Grandey et al., 2006) N2O emissions compared to traditional tillage (TT). This large uncertainty is associated with the duration of tillage practices and climatic variability. Liming is widely use to solve problems of soil acidity (Al toxicity, yield penalties, etc). Several studies show a decrease in N2O emissions with liming (Barton et al., 2013) whereas no significant effects or increases were observed in others (Galbally et al., 2010). The aim of this work was to evaluate the effects of tillage (NT vs TT) and liming application or not of Ca-amendment) on N2O emissions from an acid soil during a rainfed crop.
Resumo:
Air pollution abatement policies must be based on quantitative information on current and future emissions of pollutants. As emission projections uncertainties are inevitable and traditional statistical treatments of uncertainty are highly time/resources consuming, a simplified methodology for nonstatistical uncertainty estimation based on sensitivity analysis is presented in this work. The methodology was applied to the “with measures” scenario for Spain, concretely over the 12 highest emitting sectors regarding greenhouse gas and air pollutants emissions. Examples of methodology application for two important sectors (power plants, and agriculture and livestock) are shown and explained in depth. Uncertainty bands were obtained up to 2020 by modifying the driving factors of the 12 selected sectors and the methodology was tested against a recomputed emission trend in a low economic-growth perspective and official figures for 2010, showing a very good performance. Implications: A solid understanding and quantification of uncertainties related to atmospheric emission inventories and projections provide useful information for policy negotiations. However, as many of those uncertainties are irreducible, there is an interest on how they could be managed in order to derive robust policy conclusions. Taking this into account, a method developed to use sensitivity analysis as a source of information to derive nonstatistical uncertainty bands for emission projections is presented and applied to Spain. This method simplifies uncertainty assessment and allows other countries to take advantage of their sensitivity analyses.
Resumo:
Climate change conference was hold in Copenhagen in 2009, global warming became the worldwide focus once again. China as a developing country has paid more attention for this environmental problem. In China, a large part of carbon dioxide is emitted to the atmosphere from combustion of fossil fuels in power plants. How to control emission of the greenhouse gas into atmosphere is becoming an urgent concern. Among numerous methods, CO2 capture is the hope to limit the amount of CO2 emitted into the air. The well-established method for CO2 capture is to remove CO2 by absorption into solutions in conventional equipment. Absorbents used for CO2 and H2S capture are important choice for CO2 capture technology. It is related to the cost and efficiency of plant directly and is essential to investigate the proposed CO2 and H2S absorbents.
Resumo:
streets in local residential areas in large cities, real traffic tests for pollutant emissions and fuel consumption have been carried out in Madrid city centre. Emission concentration and car activity were simultaneously measured by a Portable Emissions Measurement System. Real life tests carried out at different times and on different days were performed with a turbo-diesel engine light vehicle equipped with an oxidizer catalyst and using different driving styles with a previously trained driver. The results show that by reducing the speed limit from 50 km h-1 to 30 km h-1, using a normal driving style, the time taken for a given trip does not increase, but fuel consumption and NOx, CO and PM emissions are clearly reduced. Therefore, the main conclusion of this work is that reducing the speed limit in some narrow streets in residential and commercial areas or in a city not only increases pedestrian safety, but also contributes to reducing the environmental impact of motor vehicles and reducing fuel consumption. In addition, there is also a reduction in the greenhouse gas emissions resulting from the combustion of the fuel.
Resumo:
On December 20th 2006 the European Commission approved a law proposal to include the civil aviation sector in the European market of carbon dioxide emission rights [European Union Emissions Trading System, EUETS). On July 8th 2009, the European Parliament and Conseil agreed that all flights leaving or landing in the EU airports starting from January 1st 2012 should be included in the EUETS. On November 19th 2008, the EU Directive 2008/101/CE [1] included the civil aviation activities in the EUETS, and this directive was transposed by the Spanish law 13/2010 of July 5th 2010 [2]. Thus, in 2012 the aviation sector should reduce their emissions to 97 % of the mean values registered in the period 2004-2006, and for 2013 these emission reductions should reach 95 % of the mean values for that same period. Trying to face this situation, the aviation companies are planning seriously the use of alternative jet fuels to reduce their greenhouse gas emissions and to lower their costs. However, some US airlines have issued a lawsuit before the European Court of Justice based in that this EU action violates a long standing worldwide aviation treaty, the Chicago convention of 1944, and also the Chinese aviation companies have rejected to pay any EU carbon dioxide tax [3]. Moreover, the USA Departments of Agriculture and Energy and the Navy will invest a total of up to $150 million over three years to spur production of aviation and marine biofuels for commercial and military applications [4]. However, the jet fuels should fulfill a set of extraordinarily sensitive properties to guarantee the safety of planes and passengers during all the flights.
Resumo:
Reducing energy consumption is one of the main challenges in most countries. For example, European Member States agreed to reduce greenhouse gas (GHG) emissions by 20% in 2020 compared to 1990 levels (EC 2008). Considering each sector separately, ICTs account nowadays for 2% of total carbon emissions. This percentage will increase as the demand of communication services and applications steps up. At the same time, the expected evolution of ICT-based developments - smart buildings, smart grids and smart transportation systems among others - could result in the creation of energy-saving opportunities leading to global emission reductions (Labouze et al. 2008), although the amount of these savings is under debate (Falch 2010). The main development required in telecommunication networks ?one of the three major blocks of energy consumption in ICTs together with data centers and consumer equipment (Sutherland 2009) ? is the evolution of existing infrastructures into ultra-broadband networks, the so-called Next Generation Networks (NGN). Fourth generation (4G) mobile communications are the technology of choice to complete -or supplement- the ubiquitous deployment of NGN. The risk and opportunities involved in NGN roll-out are currently in the forefront of the economic and policy debate. However, the issue of which is the role of energy consumption in 4G networks seems absent, despite the fact that the economic impact of energy consumption arises as a key element in the cost analysis of this type of networks. Precisely, the aim of this research is to provide deeper insight on the energy consumption involved in the usage of a 4G network, its relationship with network main design features, and the general economic impact this would have in the capital and operational expenditures related with network deployment and usage.
Resumo:
Renewable energy sources are believed to reduce drastically greenhouse gas emissions that would otherwise be generated from fossil fuels used to generate electricity. This implies that a unit of renewable energy will replace a unit of fossil-fuel, with its CO2 emissions, on an equivalent basis (with no other effects on the grid). But, the fuel economy and emissions in the existing power systems are not proportional with the electricity production of intermittent sources due to cycling of the fossil fuel plants that make up the balance of the grid (i.e. changing the power output makes thermal units to operate less efficiently). This study focuses in the interactions between wind generation and thermal plants cycling, by establishing the levels of extra fuel use caused by decreased efficiencies of fossil back-up for wind electricity in Spain. We analyze the production of all thermal plants in 2011, studying different scenarios where wind penetration causes major deviations in programming, while we define a procedure for quantifying the carbon reductions by using emission factors and efficiency curves from the existing installations. The objectives are to discuss the real contributions of renewable energies to the environmental targets as well as suggest alternatives that would improve the reliability of future power systems.