2 resultados para Graph mining

em Universidad Politécnica de Madrid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Los flujos de trabajo científicos han sido adoptados durante la última década para representar los métodos computacionales utilizados en experimentos in silico, así como para dar soporte a sus publicaciones asociadas. Dichos flujos de trabajo han demostrado ser útiles para compartir y reproducir experimentos científicos, permitiendo a investigadores visualizar, depurar y ahorrar tiempo a la hora de re-ejecutar un trabajo realizado con anterioridad. Sin embargo, los flujos de trabajo científicos pueden ser en ocasiones difíciles de entender y reutilizar. Esto es debido a impedimentos como el gran número de flujos de trabajo existentes en repositorios, su heterogeneidad o la falta generalizada de documentación y ejemplos de uso. Además, dado que normalmente es posible implementar un mismo método utilizando algoritmos o técnicas distintas, flujos de trabajo aparentemente distintos pueden estar relacionados a un determinado nivel de abstracción, basándose, por ejemplo, en su funcionalidad común. Esta tesis se centra en la reutilización de flujos de trabajo y su abstracción mediante la exploración de relaciones entre los flujos de trabajo de un repositorio y la extracción de abstracciones que podrían ayudar a la hora de reutilizar otros flujos de trabajo existentes. Para ello, se propone un modelo simple de representación de flujos de trabajo y sus ejecuciones, se analizan las abstracciones típicas que se pueden encontrar en los repositorios de flujos de trabajo, se exploran las prácticas habituales de los usuarios a la hora de reutilizar flujos de trabajo existentes y se describe un método para descubrir abstracciones útiles para usuarios, basadas en técnicas existentes de teoría de grafos. Los resultados obtenidos exponen las abstracciones y prácticas comunes de usuarios en términos de reutilización de flujos de trabajo, y muestran cómo las abstracciones que se extraen automáticamente tienen potencial para ser reutilizadas por usuarios que buscan diseñar nuevos flujos de trabajo. Abstract Scientific workflows have been adopted in the last decade to represent the computational methods used in in silico scientific experiments and their associated research products. Scientific workflows have demonstrated to be useful for sharing and reproducing scientific experiments, allowing scientists to visualize, debug and save time when re-executing previous work. However, scientific workflows may be difficult to understand and reuse. The large amount of available workflows in repositories, together with their heterogeneity and lack of documentation and usage examples may become an obstacle for a scientist aiming to reuse the work from other scientists. Furthermore, given that it is often possible to implement a method using different algorithms or techniques, seemingly disparate workflows may be related at a higher level of abstraction, based on their common functionality. In this thesis we address the issue of reusability and abstraction by exploring how workflows relate to one another in a workflow repository, mining abstractions that may be helpful for workflow reuse. In order to do so, we propose a simple model for representing and relating workflows and their executions, we analyze the typical common abstractions that can be found in workflow repositories, we explore the current practices of users regarding workflow reuse and we describe a method for discovering useful abstractions for workflows based on existing graph mining techniques. Our results expose the common abstractions and practices of users in terms of workflow reuse, and show how our proposed abstractions have potential to become useful for users designing new workflows.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Scientific workflows provide the means to define, execute and reproduce computational experiments. However, reusing existing workflows still poses challenges for workflow designers. Workflows are often too large and too specific to reuse in their entirety, so reuse is more likely to happen for fragments of workflows. These fragments may be identified manually by users as sub-workflows, or detected automatically. In this paper we present the FragFlow approach, which detects workflow fragments automatically by analyzing existing workflow corpora with graph mining algorithms. FragFlow detects the most common workflow fragments, links them to the original workflows and visualizes them. We evaluate our approach by comparing FragFlow results against user-defined sub-workflows from three different corpora of the LONI Pipeline system. Based on this evaluation, we discuss how automated workflow fragment detection could facilitate workflow reuse.