45 resultados para Graph mining
em Universidad Politécnica de Madrid
Resumo:
Los flujos de trabajo científicos han sido adoptados durante la última década para representar los métodos computacionales utilizados en experimentos in silico, así como para dar soporte a sus publicaciones asociadas. Dichos flujos de trabajo han demostrado ser útiles para compartir y reproducir experimentos científicos, permitiendo a investigadores visualizar, depurar y ahorrar tiempo a la hora de re-ejecutar un trabajo realizado con anterioridad. Sin embargo, los flujos de trabajo científicos pueden ser en ocasiones difíciles de entender y reutilizar. Esto es debido a impedimentos como el gran número de flujos de trabajo existentes en repositorios, su heterogeneidad o la falta generalizada de documentación y ejemplos de uso. Además, dado que normalmente es posible implementar un mismo método utilizando algoritmos o técnicas distintas, flujos de trabajo aparentemente distintos pueden estar relacionados a un determinado nivel de abstracción, basándose, por ejemplo, en su funcionalidad común. Esta tesis se centra en la reutilización de flujos de trabajo y su abstracción mediante la exploración de relaciones entre los flujos de trabajo de un repositorio y la extracción de abstracciones que podrían ayudar a la hora de reutilizar otros flujos de trabajo existentes. Para ello, se propone un modelo simple de representación de flujos de trabajo y sus ejecuciones, se analizan las abstracciones típicas que se pueden encontrar en los repositorios de flujos de trabajo, se exploran las prácticas habituales de los usuarios a la hora de reutilizar flujos de trabajo existentes y se describe un método para descubrir abstracciones útiles para usuarios, basadas en técnicas existentes de teoría de grafos. Los resultados obtenidos exponen las abstracciones y prácticas comunes de usuarios en términos de reutilización de flujos de trabajo, y muestran cómo las abstracciones que se extraen automáticamente tienen potencial para ser reutilizadas por usuarios que buscan diseñar nuevos flujos de trabajo. Abstract Scientific workflows have been adopted in the last decade to represent the computational methods used in in silico scientific experiments and their associated research products. Scientific workflows have demonstrated to be useful for sharing and reproducing scientific experiments, allowing scientists to visualize, debug and save time when re-executing previous work. However, scientific workflows may be difficult to understand and reuse. The large amount of available workflows in repositories, together with their heterogeneity and lack of documentation and usage examples may become an obstacle for a scientist aiming to reuse the work from other scientists. Furthermore, given that it is often possible to implement a method using different algorithms or techniques, seemingly disparate workflows may be related at a higher level of abstraction, based on their common functionality. In this thesis we address the issue of reusability and abstraction by exploring how workflows relate to one another in a workflow repository, mining abstractions that may be helpful for workflow reuse. In order to do so, we propose a simple model for representing and relating workflows and their executions, we analyze the typical common abstractions that can be found in workflow repositories, we explore the current practices of users regarding workflow reuse and we describe a method for discovering useful abstractions for workflows based on existing graph mining techniques. Our results expose the common abstractions and practices of users in terms of workflow reuse, and show how our proposed abstractions have potential to become useful for users designing new workflows.
Resumo:
Scientific workflows provide the means to define, execute and reproduce computational experiments. However, reusing existing workflows still poses challenges for workflow designers. Workflows are often too large and too specific to reuse in their entirety, so reuse is more likely to happen for fragments of workflows. These fragments may be identified manually by users as sub-workflows, or detected automatically. In this paper we present the FragFlow approach, which detects workflow fragments automatically by analyzing existing workflow corpora with graph mining algorithms. FragFlow detects the most common workflow fragments, links them to the original workflows and visualizes them. We evaluate our approach by comparing FragFlow results against user-defined sub-workflows from three different corpora of the LONI Pipeline system. Based on this evaluation, we discuss how automated workflow fragment detection could facilitate workflow reuse.
Resumo:
El panel se divide en tres secciones : Minería histórica , Patrimonio Minero y Museos.
A Methodological model to assist the optimization and risk management of mining investment decisions
Resumo:
Identifying, quantifying, and minimizing technical risks associated with investment decisions is a key challenge for mineral industry decision makers and investors. However, risk analysis in most bankable mine feasibility studies are based on the stochastic modelling of project “Net Present Value” (NPV)which, in most cases, fails to provide decision makers with a truly comprehensive analysis of risks associated with technical and management uncertainty and, as a result, are of little use for risk management and project optimization. This paper presents a value-chain risk management approach where project risk is evaluated for each step of the project lifecycle, from exploration to mine closure, and risk management is performed as a part of a stepwise value-added optimization process.
Resumo:
A number of thrombectomy devices using a variety of methods have now been developed to facilitate clot removal. We present research involving one such experimental device recently developed in the UK, called a ‘GP’ Thrombus Aspiration Device (GPTAD). This device has the potential to bring about the extraction of a thrombus. Although the device is at a relatively early stage of development, the results look encouraging. In this work, we present an analysis and modeling of the GPTAD by means of the bond graph technique; it seems to be a highly effective method of simulating the device under a variety of conditions. Such modeling is useful in optimizing the GPTAD and predicting the result of clot extraction. The aim of this simulation model is to obtain the minimum pressure necessary to extract the clot and to verify that both the pressure and the time required to complete the clot extraction are realistic for use in clinical situations, and are consistent with any experimentally obtained data. We therefore consider aspects of rheology and mechanics in our modeling.
Resumo:
Tree-reweighted belief propagation is a message passing method that has certain advantages compared to traditional belief propagation (BP). However, it fails to outperform BP in a consistent manner, does not lend itself well to distributed implementation, and has not been applied to distributions with higher-order interactions. We propose a method called uniformly-reweighted belief propagation that mitigates these drawbacks. After having shown in previous works that this method can substantially outperform BP in distributed inference with pairwise interaction models, in this paper we extend it to higher-order interactions and apply it to LDPC decoding, leading performance gains over BP.
Resumo:
We present a novel framework for encoding latency analysis of arbitrary multiview video coding prediction structures. This framework avoids the need to consider an specific encoder architecture for encoding latency analysis by assuming an unlimited processing capacity on the multiview encoder. Under this assumption, only the influence of the prediction structure and the processing times have to be considered, and the encoding latency is solved systematically by means of a graph model. The results obtained with this model are valid for a multiview encoder with sufficient processing capacity and serve as a lower bound otherwise. Furthermore, with the objective of low latency encoder design with low penalty on rate-distortion performance, the graph model allows us to identify the prediction relationships that add higher encoding latency to the encoder. Experimental results for JMVM prediction structures illustrate how low latency prediction structures with a low rate-distortion penalty can be derived in a systematic manner using the new model.
Resumo:
We show a procedure for constructing a probabilistic atlas based on affine moment descriptors. It uses a normalization procedure over the labeled atlas. The proposed linear registration is defined by closed-form expressions involving only geometric moments. This procedure applies both to atlas construction as atlas-based segmentation. We model the likelihood term for each voxel and each label using parametric or nonparametric distributions and the prior term is determined by applying the vote-rule. The probabilistic atlas is built with the variability of our linear registration. We have two segmentation strategy: a) it applies the proposed affine registration to bring the target image into the coordinate frame of the atlas or b) the probabilistic atlas is non-rigidly aligning with the target image, where the probabilistic atlas is previously aligned to the target image with our affine registration. Finally, we adopt a graph cut - Bayesian framework for implementing the atlas-based segmentation.
Resumo:
Twenty production blasts in two open pit mines were monitored, in rocks with medium to very high strength. Three different blasting agents (ANFO, watergel and emulsion blend) were used, with powder factors ranging between 0.88 and 1.45 kg/m3. Excavators were front loaders and rope shovels. Mechanical properties of the rock, blasting characteristics and mucking rates were carefully measured. A model for the calculation of the productivity of excavators is developed thereof, in which the production rate results as a product of an ideal, maximum, productivity rate times an operating efficiency. The maximum rate is a function of the dipper capacity and the efficiency is a function of rock density, strength, and explosive energy concentration in the rock. The model is statistically significant and explains up to 92 % of the variance of the production rate measurements.
Resumo:
Abstract Due to recent scientific and technological advances in information sys¬tems, it is now possible to perform almost every application on a mobile device. The need to make sense of such devices more intelligent opens an opportunity to design data mining algorithm that are able to autonomous execute in local devices to provide the device with knowledge. The problem behind autonomous mining deals with the proper configuration of the algorithm to produce the most appropriate results. Contextual information together with resource information of the device have a strong impact on both the feasibility of a particu¬lar execution and on the production of the proper patterns. On the other hand, performance of the algorithm expressed in terms of efficacy and efficiency highly depends on the features of the dataset to be analyzed together with values of the parameters of a particular implementation of an algorithm. However, few existing approaches deal with autonomous configuration of data mining algorithms and in any case they do not deal with contextual or resources information. Both issues are of particular significance, in particular for social net¬works application. In fact, the widespread use of social networks and consequently the amount of information shared have made the need of modeling context in social application a priority. Also the resource consumption has a crucial role in such platforms as the users are using social networks mainly on their mobile devices. This PhD thesis addresses the aforementioned open issues, focusing on i) Analyzing the behavior of algorithms, ii) mapping contextual and resources information to find the most appropriate configuration iii) applying the model for the case of a social recommender. Four main contributions are presented: - The EE-Model: is able to predict the behavior of a data mining algorithm in terms of resource consumed and accuracy of the mining model it will obtain. - The SC-Mapper: maps a situation defined by the context and resource state to a data mining configuration. - SOMAR: is a social activity (event and informal ongoings) recommender for mobile devices. - D-SOMAR: is an evolution of SOMAR which incorporates the configurator in order to provide updated recommendations. Finally, the experimental validation of the proposed contributions using synthetic and real datasets allows us to achieve the objectives and answer the research questions proposed for this dissertation.
Resumo:
Expert systems are built from knowledge traditionally elicited from the human expert. It is precisely knowledge elicitation from the expert that is the bottleneck in expert system construction. On the other hand, a data mining system, which automatically extracts knowledge, needs expert guidance on the successive decisions to be made in each of the system phases. In this context, expert knowledge and data mining discovered knowledge can cooperate, maximizing their individual capabilities: data mining discovered knowledge can be used as a complementary source of knowledge for the expert system, whereas expert knowledge can be used to guide the data mining process. This article summarizes different examples of systems where there is cooperation between expert knowledge and data mining discovered knowledge and reports our experience of such cooperation gathered from a medical diagnosis project called Intelligent Interpretation of Isokinetics Data, which we developed. From that experience, a series of lessons were learned throughout project development. Some of these lessons are generally applicable and others pertain exclusively to certain project types.
Resumo:
The study of cross-reactivity in allergy is key to both understanding. the allergic response of many patients and providing them with a rational treatment In the present study, protein microarrays and a co-sensitization graph approach were used in conjunction with an allergen microarray immunoassay. This enabled us to include a wide number of proteins and a large number of patients, and to study sensitization profiles among members of the LTP family. Fourteen LTPs from the most frequent plant food-induced allergies in the geographical area studied were printed into a microarray specifically designed for this research. 212 patients with fruit allergy and 117 food-tolerant pollen allergic subjects were recruited from seven regions of Spain with different pollen profiles, and their sera were tested with allergen microarray. This approach has proven itself to be a good tool to study cross-reactivity between members of LTP family, and could become a useful strategy to analyze other families of allergens.
Resumo:
Acquired brain injury (ABI) is one of the leading causes of death and disability in the world and is associated with high health care costs as a result of the acute treatment and long term rehabilitation involved. Different algorithms and methods have been proposed to predict the effectiveness of rehabilitation programs. In general, research has focused on predicting the overall improvement of patients with ABI. The purpose of this study is the novel application of data mining (DM) techniques to predict the outcomes of cognitive rehabilitation in patients with ABI. We generate three predictive models that allow us to obtain new knowledge to evaluate and improve the effectiveness of the cognitive rehabilitation process. Decision tree (DT), multilayer perceptron (MLP) and general regression neural network (GRNN) have been used to construct the prediction models. 10-fold cross validation was carried out in order to test the algorithms, using the Institut Guttmann Neurorehabilitation Hospital (IG) patients database. Performance of the models was tested through specificity, sensitivity and accuracy analysis and confusion matrix analysis. The experimental results obtained by DT are clearly superior with a prediction average accuracy of 90.38%, while MLP and GRRN obtained a 78.7% and 75.96%, respectively. This study allows to increase the knowledge about the contributing factors of an ABI patient recovery and to estimate treatment efficacy in individual patients.
Resumo:
We propose a method to measure real-valued time series irreversibility which combines two different tools: the horizontal visibility algorithm and the Kullback-Leibler divergence. This method maps a time series to a directed network according to a geometric criterion. The degree of irreversibility of the series is then estimated by the Kullback-Leibler divergence (i.e. the distinguishability) between the in and out degree distributions of the associated graph. The method is computationally efficient and does not require any ad hoc symbolization process. We find that the method correctly distinguishes between reversible and irreversible stationary time series, including analytical and numerical studies of its performance for: (i) reversible stochastic processes (uncorrelated and Gaussian linearly correlated), (ii) irreversible stochastic processes (a discrete flashing ratchet in an asymmetric potential), (iii) reversible (conservative) and irreversible (dissipative) chaotic maps, and (iv) dissipative chaotic maps in the presence of noise. Two alternative graph functionals, the degree and the degree-degree distributions, can be used as the Kullback-Leibler divergence argument. The former is simpler and more intuitive and can be used as a benchmark, but in the case of an irreversible process with null net current, the degree-degree distribution has to be considered to identify the irreversible nature of the series
Resumo:
The study examines the Capital Asset Pricing Model (CAPM) for the mining sector using weekly stock returns from 27 companies traded on the New York Stock Exchange (NYSE) or on the London Stock Exchange (LSE) for the period of December 2008 to December 2010. The results support the use of the CAPM for the allocation of risk to companies. Most companies involved in precious metals (particularly gold), which have a beta value less than unity (Table 1), have been actuated as shelter values during the financial crisis. Values of R2 do not shown very explanatory power of fitted models (R2 < 70 %). Estimated coefficients beta are not sufficient to determine the expected returns on securities but the results of the tests conducted on sample data for the period analysed do not appear to clearly reject the CAPM