4 resultados para Gram-negative
em Universidad Politécnica de Madrid
Resumo:
Soft-rot Enterobacteriaceae (SRE), which belong to the genera Pectobacterium and Dickeya, consist mainly of broad host-range pathogens that cause wilt, rot, and blackleg diseases on a wide range of plants. They are found in plants, insects, soil, and water in agricultural regions worldwide. SRE encode all six known protein secretion systems present in gram-negative bacteria, and these systems are involved in attacking host plants and competing bacteria. They also produce and detect multiple types of small molecules to coordinate pathogenesis, modify the plant environment, attack competing microbes, and perhaps to attract insect vectors. This review integrates new information about the role protein secretion and detection and production of ions and small molecules play in soft-rot pathogenicity.
Resumo:
The genome of the Gram-negative bacterium Pseudomonas putida harbours a complete set of xcp genes for a type II protein secretion system (T2SS). This study shows that expression of these genes is induced under inorganic phosphate (Pi ) limitation and that the system enables the utilization of various organic phosphate sources. A phosphatase of the PhoX family, previously designated UxpB, was identified, which was produced under low Pi conditions and transported across the cell envelope in an Xcp-dependent manner demonstrating that the xcp genes encode an active T2SS. The signal sequence of UxpB contains a twin-arginine translocation (Tat) motif as well as a lipobox, and both processing by leader peptidase II and Tat dependency were experimentally confirmed. Two different tat gene clusters were detected in the P.?putida genome, of which one, named tat-1, is located adjacent to the uxpB and xcp genes. Both Tat systems appeared to be capable of transporting the UxpB protein. However, expression of the tat-1 genes was strongly induced by low Pi levels, indicating a function of this system in survival during Pi starvation.
Resumo:
The genome of the Gram-negative bacterium Pseudomonas putida harbours a complete set of xcp genes for a type II protein secretion system (T2SS). This study shows that expression of these genes is induced under inorganic phosphate (Pi ) limitation and that the system enables the utilization of various organic phosphate sources. A phosphatase of the PhoX family, previously designated UxpB, was identified, which was produced under low Pi conditions and transported across the cell envelope in an Xcp-dependent manner demonstrating that the xcp genes encode an active T2SS. The signal sequence of UxpB contains a twin-arginine translocation (Tat) motif as well as a lipobox, and both processing by leader peptidase II and Tat dependency were experimentally confirmed. Two different tat gene clusters were detected in the P.?putida genome, of which one, named tat-1, is located adjacent to the uxpB and xcp genes. Both Tat systems appeared to be capable of transporting the UxpB protein. However, expression of the tat-1 genes was strongly induced by low Pi levels, indicating a function of this system in survival during Pi starvation.
Resumo:
Erwinia amylovora causes fire blight in economically important plants of the family Rosaceae. This bacterial pathogen spends part of its life cycle coping with starvation and other fluctuating environmental conditions. In many Gram-negative bacteria, starvation and other stress responses are regulated by the sigma factor RpoS. We obtained an E. amylovora rpoS mutant to explore the role of this gene in starvation responses and its potential implication in other processes not yet studied in this pathogen. Results showed that E. amylovora needs rpoS to develop normal starvation survival and viable but nonculturable (VBNC) responses. Furthermore, this gene contributed to stationary phase cross-protection against oxidative, osmotic, and acid stresses and was essential for cross-protection against heat shock, but nonessential against acid shock. RpoS also mediated regulation of motility, exopolysaccharide synthesis, and virulence in immature loquats, but not in pear plantlets, and contributed to E. amylovora survival in nonhost tissues during incompatible interactions. Our results reveal some unique roles for the rpoS gene in E. amylovora and provide new knowledge on the regulation of different processes related to its ecology, including survival in different environments and virulence in immature fruits.